Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
10 декабря 2022 21:40
750
Король приказал построить в городе метро, в котором:• любые две линии пересекаются ровно в одной общей станции;
ровно в одной станции сходятся (пересекаются) ровно три линии, а во
всех остальных станциях сходятся (пересекаются) ровно две линии.
Количество линий в этом метро должно быть 102.
Сколько станций придётся построить?
1
ответ
Ответ: 5048, 5045, 5041, 5036, 5030, 5023, 5015, 5006, 4996, 4985, 4973, 4960, 4946, 4931, 4915, 4898, 4880, 4861, 4841, 4820, 4798, 4775, 4751, 4726, 4700, 4673, 4645, 4616, 4586, 4555, 4523, 4490, 4456, 4421, 4385, 4348, 4310, 4271, 4231, 4190, 4148, 4105, 4061, 4016, 3970, 3923, 3875, 3826, 3776, 3725, 3673, 3620, 3566, 3511, 3455, 3398, 3340, 3281, 3221, 3160, 3098, 3035, 2971, 2906, 2840, 2773, 2705, 2636, 2566, 2495, 2423, 2350, 2276, 2201, 2125, 2048, 1970, 1891, 1811, 1730, 1648, 1565, 1481, 1396, 1310, 1223, 1135, 1046, 956, 865, 773, 680, 586, 491, 395, 298, 200, 101, 1
Объяснение: Если бы не было станций, через которые проходили бы более двух линий, то в го-
роде должно было бы быть 101 · 100 = 5050 станций (каждая из линий пересекается 2
с остальными 100, каждое пересечение считается два раза (для одной линии и для другой), поэтому делим на 2).
Если через ровно одну пересадочную станцию проходят ровно три линии, то эта пересадочная станция объединяет три двойных, и тогда ответ 5050 − 2 = 5048.
Если через ровно одну пересадочную станцию проходят ровно k > 3 линий, то эта
пересадочная станция объединяет k(k − 1) двойных, и тогда ответ 5050− k(k − 1) +1. 22
Засчитывались все ответы, получающиеся по этой формуле при k ∈ . Не засчитывались ответы, при которых станций, через которые проходит три или более линий, более одной, т.к. если через станцию проходит k > 3 линий, то и 3 линии через неё проходят.
Ответ: Если бы не было станций, через которые проходили бы более двух линий, то в го-
роде должно было бы быть 101 · 100 = 5050 станций (каждая из линий пересекается 2
с остальными 100, каждое пересечение считается два раза (для одной линии и для другой), поэтому делим на 2).
Если через ровно одну пересадочную станцию проходят ровно три линии, то эта пересадочная станция объединяет три двойных, и тогда ответ 5050 − 2 = 5048.
Если через ровно одну пересадочную станцию проходят ровно k > 3 линий, то эта
пересадочная станция объединяет k(k − 1) двойных, и тогда ответ 5050− k(k − 1) +1. 22
Засчитывались все ответы, получающиеся по этой формуле при k ∈ . Не засчитывались ответы, при которых станций, через которые проходит три или более линий, более одной, т.к. если через станцию проходит k > 3 линий, то и 3 линии через неё проходят.
Ответ: 5048, 5045, 5041, 5036, 5030, 5023, 5015, 5006, 4996, 4985, 4973, 4960, 4946, 4931, 4915, 4898, 4880, 4861, 4841, 4820, 4798, 4775, 4751, 4726, 4700, 4673, 4645, 4616, 4586, 4555, 4523, 4490, 4456, 4421, 4385, 4348, 4310, 4271, 4231, 4190, 4148, 4105, 4061, 4016, 3970, 3923, 3875, 3826, 3776, 3725, 3673, 3620, 3566, 3511, 3455, 3398, 3340, 3281, 3221, 3160, 3098, 3035, 2971, 2906, 2840, 2773, 2705, 2636, 2566, 2495, 2423, 2350, 2276, 2201, 2125, 2048, 1970, 1891, 1811, 1730, 1648, 1565, 1481, 1396, 1310, 1223, 1135, 1046, 956, 865, 773, 680, 586, 491, 395, 298, 200, 101, 1
Объяснение: Если бы не было станций, через которые проходили бы более двух линий, то в го-
роде должно было бы быть 101 · 100 = 5050 станций (каждая из линий пересекается 2
с остальными 100, каждое пересечение считается два раза (для одной линии и для другой), поэтому делим на 2).
Если через ровно одну пересадочную станцию проходят ровно три линии, то эта пересадочная станция объединяет три двойных, и тогда ответ 5050 − 2 = 5048.
Если через ровно одну пересадочную станцию проходят ровно k > 3 линий, то эта
пересадочная станция объединяет k(k − 1) двойных, и тогда ответ 5050− k(k − 1) +1. 22
Засчитывались все ответы, получающиеся по этой формуле при k ∈ . Не засчитывались ответы, при которых станций, через которые проходит три или более линий, более одной, т.к. если через станцию проходит k > 3 линий, то и 3 линии через неё проходят.
Ответ: Если бы не было станций, через которые проходили бы более двух линий, то в го-
роде должно было бы быть 101 · 100 = 5050 станций (каждая из линий пересекается 2
с остальными 100, каждое пересечение считается два раза (для одной линии и для другой), поэтому делим на 2).
Если через ровно одну пересадочную станцию проходят ровно три линии, то эта пересадочная станция объединяет три двойных, и тогда ответ 5050 − 2 = 5048.
Если через ровно одну пересадочную станцию проходят ровно k > 3 линий, то эта
пересадочная станция объединяет k(k − 1) двойных, и тогда ответ 5050− k(k − 1) +1. 22
Засчитывались все ответы, получающиеся по этой формуле при k ∈ . Не засчитывались ответы, при которых станций, через которые проходит три или более линий, более одной, т.к. если через станцию проходит k > 3 линий, то и 3 линии через неё проходят.
Ответ: 5048, 5045, 5041, 5036, 5030, 5023, 5015, 5006, 4996, 4985, 4973, 4960, 4946, 4931, 4915, 4898, 4880, 4861, 4841, 4820, 4798, 4775, 4751, 4726, 4700, 4673, 4645, 4616, 4586, 4555, 4523, 4490, 4456, 4421, 4385, 4348, 4310, 4271, 4231, 4190, 4148, 4105, 4061, 4016, 3970, 3923, 3875, 3826, 3776, 3725, 3673, 3620, 3566, 3511, 3455, 3398, 3340, 3281, 3221, 3160, 3098, 3035, 2971, 2906, 2840, 2773, 2705, 2636, 2566, 2495, 2423, 2350, 2276, 2201, 2125, 2048, 1970, 1891, 1811, 1730, 1648, 1565, 1481, 1396, 1310, 1223, 1135, 1046, 956, 865, 773, 680, 586, 491, 395, 298, 200, 101, 1
0
·
Хороший ответ
12 декабря 2022 21:40
Остались вопросы?
Еще вопросы по категории География
Аравийское море внутреннее или окраинное?...
Примеры гор байкальской складчатости примеры гор каледонской складчатости примеры гор герцинской складчатости примеры гор мезозойской складчатости при...
Что такое ТРОПОСФЕРА, и что в ней содержится?...
1.какие коренные народы населяют европейский север?...
Маршрут Х. Колумба на карте В 1493г...
Все предметы