Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
14 декабря 2022 18:27
440
Исследовать экстремумы на функции 1.y=x^3-6x^2 2.y=x^4-4x^3 3.y=x^3/3+x^2-3x+5 4.y=2x^3-9x^2-60x+1 5.y=x^4+2x^2+1
1
ответ
Экстремум - максимальное или минимальное значение функции.
Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум - точка экстремума называется точкой минимума,
а если максимум — точкой максимума.
А теперь решение:
1)

необходимое условие экстремума функции одной переменной- в этой точке первая производная функции должна обращаться в нуль.
Найдем производную

приравняем ее к нулю

у нас две точки экстремума. Определим теперь какие это точки (максимума или минимума)
- Точка x₀ называется точкой максимума, если существует её окрестность, такая, что для всех значений данной окрестности выполнено неравенство: f(x)≤f(x₀)
- Точка x₀ называется точкой минимума, если существует её окрестность, такая, что для всех значений данной окрестности выполнено неравенство: f(x)≥f(x₀)
Как это выглядит на решении?
нарисуем числовую прямую и отметим на ней точки- экстремумы и проверим знак производной на полученных интервалах:
+ - +
------- 0 ------------ 4 -----------
Значит на промежутке (-оо;0) функция возрастает
на промежутке (0;4) - убывает
на промежутке (4;+оо) - возрастает
Значит х=0 точка максимума
значит х=4 точка минимума
Значение функции в точке х=0
- максимальное значение
значение функции в точке х=4
-минимальное значение
Далее решает по аналогии
2)

найдем точки экстремума


+ - +
----- 0 --------- 3 ------------
на промежутке (-оо;0) и (3;+оо) - возрастает
на промежутке (0;3) убывает
х=0 точка максимума
максимальное значение функции
х=3 точка минимума
минимальное значение функции
3)



+ - +
------ - 3 ------- 1 ----------
на промежутке (-00;-3) и (1;+оо) возрастает
на промежутке (-3;1) убывает
х= -3 точка максимума

минимальное значение
x=1 точка минимума
минимальное значение
4)



+ - +
------- - 2 -------- 5 --------
на промежутке (-оо;-2) и (5;+оо) возрастает
на промежутке (-2;5) убывает
точка х=-2 точка максимума

максимальное значение
точка х=5 точка минимума

минимальное значение
5)



- +
-------------- 0 ----------------
на промежутке (-оо;0) убывает
на промежутке (0;+оо) возрастает
x=0 точка минимума

минимальное значение функции
Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум - точка экстремума называется точкой минимума,
а если максимум — точкой максимума.
А теперь решение:
1)
необходимое условие экстремума функции одной переменной- в этой точке первая производная функции должна обращаться в нуль.
Найдем производную
приравняем ее к нулю
у нас две точки экстремума. Определим теперь какие это точки (максимума или минимума)
- Точка x₀ называется точкой максимума, если существует её окрестность, такая, что для всех значений данной окрестности выполнено неравенство: f(x)≤f(x₀)
- Точка x₀ называется точкой минимума, если существует её окрестность, такая, что для всех значений данной окрестности выполнено неравенство: f(x)≥f(x₀)
Как это выглядит на решении?
нарисуем числовую прямую и отметим на ней точки- экстремумы и проверим знак производной на полученных интервалах:
+ - +
------- 0 ------------ 4 -----------
Значит на промежутке (-оо;0) функция возрастает
на промежутке (0;4) - убывает
на промежутке (4;+оо) - возрастает
Значит х=0 точка максимума
значит х=4 точка минимума
Значение функции в точке х=0
значение функции в точке х=4
Далее решает по аналогии
2)
найдем точки экстремума
+ - +
----- 0 --------- 3 ------------
на промежутке (-оо;0) и (3;+оо) - возрастает
на промежутке (0;3) убывает
х=0 точка максимума
х=3 точка минимума
3)
+ - +
------ - 3 ------- 1 ----------
на промежутке (-00;-3) и (1;+оо) возрастает
на промежутке (-3;1) убывает
х= -3 точка максимума
минимальное значение
x=1 точка минимума
4)
+ - +
------- - 2 -------- 5 --------
на промежутке (-оо;-2) и (5;+оо) возрастает
на промежутке (-2;5) убывает
точка х=-2 точка максимума
максимальное значение
точка х=5 точка минимума
минимальное значение
5)
- +
-------------- 0 ----------------
на промежутке (-оо;0) убывает
на промежутке (0;+оо) возрастает
x=0 точка минимума
минимальное значение функции
0
·
Хороший ответ
16 декабря 2022 18:27
Остались вопросы?
Еще вопросы по категории Алгебра
при изготовлении труб диаметром 30 мм вероятность того что диаметр будет отличаться от заданного более чем на 0,02 мм равна 0,074. Найдите вероятность...
Помогите решить:В каком случае разность натуральных чисел есть натуральное число?...
Помогите прошу))) (корень кубический) из 18 УМНОЖИТЬ НА (корень кубический) из 3/2...
Постройте график функции y=x^2+5x+6 с его помощью решите уравнение x^2+5x+6 и найдите значения при которых функция возрастает и убывает...
Разложить на множители многочлен a^2-3ab+3a-9b и найти его числовое значение при а=1; b=1*дробь*3...