Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
14 декабря 2022 19:02
997
В прямоугольном треугольнике один из катетов равен 10, а угол лежащий напротив него равен 60 градусам. Найдите площадь треугольника.
1
ответ
Так как треугольник прямоугольный, то <A (см.рисунок во вложении) = 90 - <C = 90 – 60 = 30 градусов. Как известно, в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы. Таким образом если этот катет, т.е. катет ВС обозначить Х, то гипотенуза т.е. сторона АС =2Х. По теореме Пифагора (АС)^2 = (AB)^2 + (BC)^2. Подставив в это уравнение принятые и известный отрезки имеем (2Х)² = 10² + X², или 4Х²= 10²+ X² или 3Х²= 100. Отсюда Х²= 100/3 и малый катет, т.е. Х = √(100\3) = 10/√3. Площадь прямоугольного треугольника равна половине произведения его катетов. Т.е. S = (АВ*ВС)/2 = 10*10/2√3 = 50/√3
0
·
Хороший ответ
16 декабря 2022 19:02
Остались вопросы?
Еще вопросы по категории Геометрия
1. Перпендикуляр, опущенный из точки окружности на её диаметр, делит его на два отрезка, разность которых равна 21 см. Найдите длину окружности, если...
Запишите отношения, определяющие синус, косинус, тангенс и котангенс острого угла B(бетта) треугольника, изображенного в определениях. Фото ниже, прош...
На стороне AC треугольника ABC отмечена точка D так, что AD=6, DC=10. Площадь треугольника ABC равна 48. Найдите площадь треугольника BCD....
На рисунке отрезок MP параллелен стороне CE, луч MK является биссектрисой угла BMP. Найдите величину угла KMP Помогите!!!?!?!,...
1. Диагонали параллелограмма равны 10 см и 12 см, а угол между ними равен 60°. Найдите стороны параллелограмма. 2. Один из углов параллелограмма со ст...
Все предметы