Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
15 декабря 2022 19:02
1003
Найдите высоту треугольника ABC, опущенную насторону АС, если стороны квадратных клеток равны
√10
1
ответ
В ΔАВС
АВ² = (√10)²+(2√10)²=50 ⇒ АВ=√50
ВС² = (√10)²+(2√10)²=50 ⇒ АВ=√50
АС² = ( (√10)²+(3√10)²=100 ⇒ АС=10
Высота проведенная к основанию АС делит ΔАВС на два равных прямоугольных треугольника с гипотенузой √50 и катетом 10:2=5
h² = (√50)² - (√25)²=25
h=5
АВ² = (√10)²+(2√10)²=50 ⇒ АВ=√50
ВС² = (√10)²+(2√10)²=50 ⇒ АВ=√50
АС² = ( (√10)²+(3√10)²=100 ⇒ АС=10
Высота проведенная к основанию АС делит ΔАВС на два равных прямоугольных треугольника с гипотенузой √50 и катетом 10:2=5
h² = (√50)² - (√25)²=25
h=5
0
·
Хороший ответ
17 декабря 2022 19:02
Остались вопросы?
Все предметы