Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
16 декабря 2022 00:05
1188
Диагональ прямоугольного параллелепипеда равна 10 корней из двух (см) и образует с плоскостью основания 45 градусов.Найти объем параллелепипеда,если одна сторона основания на 2см больше другой.
1
ответ
Все грани прямоугольного параллелепипеда - прямоугольники. ВВ₁⊥(АВС)⇒
BD - проекция диагонали В₁D на плоскость основания. Тогда ∠В₁DB = 45°.
ΔВ₁DB прямоугольный и, значит, равнобедренный.
BD = BВ₁ = В₁D/√2 = 10 cм
ΔABD:
∠BAD = 90°. Пусть АВ = х, тогда AD = х + 2. По теореме Пифагора
BD² = AB² + AD²
100 = x² + (x + 2)²
2x² + 4x - 96 = 0
x² + 2x - 48 = 0
x = 6 или х = - 8 по теореме Виета
По смыслу задачи подходит х = 6
АВ = 6 см, AD = 8 см.
V = AB · AD · AA₁ = 6 · 8 · 10 = 480 cм³
BD - проекция диагонали В₁D на плоскость основания. Тогда ∠В₁DB = 45°.
ΔВ₁DB прямоугольный и, значит, равнобедренный.
BD = BВ₁ = В₁D/√2 = 10 cм
ΔABD:
∠BAD = 90°. Пусть АВ = х, тогда AD = х + 2. По теореме Пифагора
BD² = AB² + AD²
100 = x² + (x + 2)²
2x² + 4x - 96 = 0
x² + 2x - 48 = 0
x = 6 или х = - 8 по теореме Виета
По смыслу задачи подходит х = 6
АВ = 6 см, AD = 8 см.
V = AB · AD · AA₁ = 6 · 8 · 10 = 480 cм³

0
·
Хороший ответ
18 декабря 2022 00:05
Остались вопросы?
Еще вопросы по категории Геометрия
На рисунке MN//AC: а)докажите что AB*BN=CB*BM б)найдите MN(AM=6;BM=8;AC=21)...
Сколько осей симметрии имеет равносторонний треугольник и прямоугольник. Ответ проиллюстрируйте чертежом....
Найдите объем правильной треугольной призмы, если сторона ее основания равна 2 м и боковая поверхность равновелика сумме оснований...
Найдите угол между векторами a⃗ и b⃗ . Ответ дайте в градусах. Обьясните пожалуйста пошагово. Обьясняя каждое действие....
1. Одна из сторон параллелограмма на 5 см больше другой, а его периметр равен 66 см. Найдите стороны параллерограмма. 2. Диагонали прямоугольника ABCD...