Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
25 декабря 2022 23:32
16849
На стороне AC треугольника ABC отмечена точка D так, что AD=6, DC=10. Площадь треугольника ABC равна 48. Найдите площадь треугольника BCD.
1
ответ
Ответ: 30см²
Объяснение:
Высота ВН общая для треугольников АВС, АВD и BDC.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты.
Ѕ(ABC):S(BCD)=AC:DC
Примем площадь ∆ BCD равной x ⇒
48:х=(6+10):10 => 480=16х ⇒ х=30 см²
Ответ: Ѕ(BCD)=30 см²
Тот же результат получим из отношения площадей треугольников АВС и BCD, выраженных по формуле S=a•h/2
Объяснение:
Высота ВН общая для треугольников АВС, АВD и BDC.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты.
Ѕ(ABC):S(BCD)=AC:DC
Примем площадь ∆ BCD равной x ⇒
48:х=(6+10):10 => 480=16х ⇒ х=30 см²
Ответ: Ѕ(BCD)=30 см²
Тот же результат получим из отношения площадей треугольников АВС и BCD, выраженных по формуле S=a•h/2

0
·
Хороший ответ
27 декабря 2022 23:32
Остались вопросы?
Еще вопросы по категории Геометрия
Дано: угол ACB = 90°; CD перпендикулярны AB; AB = 13 см; CD = 6 см. Найти: AD, BD, AC, вс....
Центр правильного треугольника АВС- точка О, его сторона равна 3. Отрезок ОМ-перпендикуляр к плоскости АВС, ОМ = 2. Найдите расстояние от точки М до в...
Если прямая перпендикулярна двум пересекающимся прямым лежащим в плоскости то она перпендикулярна этой плоскости. Помогите просто и коротко доказать э...
в основании прямой призмы авса1в1с1 лежит прямоугольный треугольник авс, угол с=90 гр, ас=4, вс=3, через ас и вершину в1 проведена плоскость, угол в1а...
Диагонали параллелограмма ABCD пересекаются в точке О. Найдите разность периметров треугольников COD и AOD, если AB = 7 см, BC = 4 см....