Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
26 декабря 2022 03:58
1197
Найдите площадь кругового сектора радиуса 4 см с центральным углом 180, 90, 60
1
ответ
Ответ:
α=180°: Sс = 8π ≈ 25,13 см²
α=90°: Sс = 4π ≈ 12,57 см²
α=60°: Sс = π*8/3 ≈ 8,38 см²
Объяснение:
Площадь круга:
Sк = π*R², где R - радиус круга.
Sк = 16π см²
Площадь сектора линейно зависит от величины центрального угла. Для сектора с центральным углом α, выраженным в градусах, формула площади выглядит так:
Sс = π*R²*α/360.
Если сравнить формулы площади круга и площади сектора, то можно сделать вывод, что:
Sс = Sк*α/360.
Значит для
α=180°: Sс = 16π*180/360 = 8π ≈ 25,13 см²
α=90°: Sс = 16π*90/360 = 4π ≈ 12,57 см²
α=60°: Sс = 16π*60/360 = π*8/3 ≈ 8,38 см²
α=180°: Sс = 8π ≈ 25,13 см²
α=90°: Sс = 4π ≈ 12,57 см²
α=60°: Sс = π*8/3 ≈ 8,38 см²
Объяснение:
Площадь круга:
Sк = π*R², где R - радиус круга.
Sк = 16π см²
Площадь сектора линейно зависит от величины центрального угла. Для сектора с центральным углом α, выраженным в градусах, формула площади выглядит так:
Sс = π*R²*α/360.
Если сравнить формулы площади круга и площади сектора, то можно сделать вывод, что:
Sс = Sк*α/360.
Значит для
α=180°: Sс = 16π*180/360 = 8π ≈ 25,13 см²
α=90°: Sс = 16π*90/360 = 4π ≈ 12,57 см²
α=60°: Sс = 16π*60/360 = π*8/3 ≈ 8,38 см²
0
·
Хороший ответ
28 декабря 2022 03:58
Остались вопросы?
Еще вопросы по категории Геометрия
Дан прямоугольный параллелепипед ABCDA1B1C1D1. Постройте сечение данного параллелепипеда плоскостью, проходящей через точки K, L и N. Запишите план по...
В правильной треугольной пирамиде сторона основания равна 2корень из 3, а высота 2 см.. Найти угол наклона бокового ребра к плоскости основания. Ответ...
Высота правильной треугольной пирамиды равна 8 см. Радиус окружности, описанной около ее основания-8 корней из 3. Вычислить: а) длину бокового ребра п...
Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник.Доказать утверждение пожалуйста)...
Как можно найти радиус окружности, описанной около треугольника, если известны сторона треугольника 3см и противоположный ей угол: 1)120° 2)30° 3)135°...