Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
26 декабря 2022 04:23
1132
Докажите теорему:если в треугольнике биссектриса является медианой,то треугольник равнобедренный.
1
ответ
Обозначим треугольник АВС; ВМ -биссектриса и медиана.
Проведем из А параллельно ВС прямую до пересечения с прямой ВМ в точке К.
Рассмотрим треугольники АМК и ВМС. АМ=СМ (т.к. ВМ – медиана), углы этих треугольников при М равны как вертикальные, ∠ВСМ=∠КАМ как накрестлежащие при пересечении параллельных (по построению) прямых ВС и АК секущей АС.
Следовательно, ∆ АКМ=∆ ВСМ по второму признаку равенства треугольников. ⇒
АК=ВС.
Т.к. ВМ биссектриса угла АВС, ∠АВМ=∠СВМ, а из равенства треугольников АКМ и СВМ углы при основании ВК треугольника ВАК равны – ∆ ВАК равнобедренный и АВ=АК.
Из доказанного выше АК=ВС, следовательно, АВ=ВС.⇒
∆ АВС равнобедренный, что и требовалось доказать.
Проведем из А параллельно ВС прямую до пересечения с прямой ВМ в точке К.
Рассмотрим треугольники АМК и ВМС. АМ=СМ (т.к. ВМ – медиана), углы этих треугольников при М равны как вертикальные, ∠ВСМ=∠КАМ как накрестлежащие при пересечении параллельных (по построению) прямых ВС и АК секущей АС.
Следовательно, ∆ АКМ=∆ ВСМ по второму признаку равенства треугольников. ⇒
АК=ВС.
Т.к. ВМ биссектриса угла АВС, ∠АВМ=∠СВМ, а из равенства треугольников АКМ и СВМ углы при основании ВК треугольника ВАК равны – ∆ ВАК равнобедренный и АВ=АК.
Из доказанного выше АК=ВС, следовательно, АВ=ВС.⇒
∆ АВС равнобедренный, что и требовалось доказать.

0
·
Хороший ответ
28 декабря 2022 04:23
Остались вопросы?
Еще вопросы по категории Геометрия
в треугольник abc вписана окружностьВ треугольник ABC вписана окружность. Она касается сторон AB и BC в точках E и P соответственно . Найдите длину от...
Через точку М не лежащую на прямой a, проведены две прямые, не имеющие общих точек с прямой а. Докажите, что по крайней мере одна из этих прямых и пря...
длина стороны ромба ABCD равна a, угол A=30 градусов, AM перпендикулярна ABC, AM=a. Найдите расстояние от точки M до прямой CD...
Составить уравнение касательной к окружности x^2+y^2-4x-6y+8=0, проведенной в точке A(3;5) на ней. Ответ должен получится: x+2y-13=0....
Отрезки EF и PQ пересекаются в их середине M.Докажите что PE паралельна QF. Решите пж с подробным решением....