Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
6^x+(1/6)^x > 2
6^x+1/(6^x) > 2
Пусть 6^x=t>0
Тогда t+1/t>2
Умножим обе части неравенства на t>0:
t^2+1>2t
t^2-2t+1>0
(t-1)^2>0 - выполняется для всех t, кроме t=1
Тогда 6^x≠1, x≠0.
Таким образом, x∈(-∞;0)∪(0;+∞)
6^x+1/(6^x) > 2
Пусть 6^x=t>0
Тогда t+1/t>2
Умножим обе части неравенства на t>0:
t^2+1>2t
t^2-2t+1>0
(t-1)^2>0 - выполняется для всех t, кроме t=1
Тогда 6^x≠1, x≠0.
Таким образом, x∈(-∞;0)∪(0;+∞)
0
·
Хороший ответ
28 декабря 2022 04:49
Остались вопросы?
Еще вопросы по категории Алгебра
ПОМОГИТЕ, ПОЖАААЛУЙСТА! Нужно решить уравнения под номерами 10, 18, 22, 25 и 26!!!...
Постройте график функции . ...
помогите пожулуйста...
Изучи рисунок и составь к нему формулу для этого графика функции. ...
Решите уравнение 7^cos(2x-pi/2)=49^cosx Найдите корни этого уравнения ,принадлежащие отрезку[-2; 4] Заранее спасибо)...