Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
6^x+(1/6)^x > 2
6^x+1/(6^x) > 2
Пусть 6^x=t>0
Тогда t+1/t>2
Умножим обе части неравенства на t>0:
t^2+1>2t
t^2-2t+1>0
(t-1)^2>0 - выполняется для всех t, кроме t=1
Тогда 6^x≠1, x≠0.
Таким образом, x∈(-∞;0)∪(0;+∞)
6^x+1/(6^x) > 2
Пусть 6^x=t>0
Тогда t+1/t>2
Умножим обе части неравенства на t>0:
t^2+1>2t
t^2-2t+1>0
(t-1)^2>0 - выполняется для всех t, кроме t=1
Тогда 6^x≠1, x≠0.
Таким образом, x∈(-∞;0)∪(0;+∞)
0
·
Хороший ответ
28 декабря 2022 04:49
Остались вопросы?
Еще вопросы по категории Алгебра
Саша решил две задачи за 35 мин. Первую задачу он решал на 7 мин дольше, чем вторую. Сколько минут Саша решал вторую задачу?...
Arccos(-1/2)-arcsin корень из3/2=...
Комплексные числа. Изобразить на комплексной плоскости множества точек, заданных неравенствами...
Периметр прямоугольника равен 26 см , а его площадь 36см2. Найдите длины сторон прямуогольника...
Ребят,помогите решить Распадающиеся уравнения С ответом!!! Буду благодарен,спасибо...