Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
6^x+(1/6)^x > 2
6^x+1/(6^x) > 2
Пусть 6^x=t>0
Тогда t+1/t>2
Умножим обе части неравенства на t>0:
t^2+1>2t
t^2-2t+1>0
(t-1)^2>0 - выполняется для всех t, кроме t=1
Тогда 6^x≠1, x≠0.
Таким образом, x∈(-∞;0)∪(0;+∞)
6^x+1/(6^x) > 2
Пусть 6^x=t>0
Тогда t+1/t>2
Умножим обе части неравенства на t>0:
t^2+1>2t
t^2-2t+1>0
(t-1)^2>0 - выполняется для всех t, кроме t=1
Тогда 6^x≠1, x≠0.
Таким образом, x∈(-∞;0)∪(0;+∞)
0
·
Хороший ответ
28 декабря 2022 04:49
Остались вопросы?
Еще вопросы по категории Алгебра
Вычислите : sin 75 градусов и cos 75 градусов , заменяя 75 градусов на 45 градуса + 30 градусов...
В каких случаях удобнее использовать кратные и дольные единицы?? СРОЧНО СПАСИБО ЗАРАНИЕ!!!!!...
( -7/18+11/12):(-19/48)? Помогите срочно, пожалуйста!!...
Найдите f(7), если f(x+5)=2^(4 − x)....
Решите уравнение. 4sin(в 4 степени)2x+3cos4x-1=0...