Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
26 декабря 2022 10:33
857
В бак, имеющий форму правильной четырёхугольной призмысо стороной основания, равной 20 см, налита жидкость. Для
того чтобы измерить объём детали сложной формы, её
полностью погружают в эту жидкость. Найдите объём детали,
если уровень жидкости в баке поднялся на 10 см.
1
ответ
По определению, в основании правильной призмы лежит правильный многоугольник. В случае правильной четырехугольной призмы это квадрат. Площадь основания призмы, то есть площадь квадрата со стороной 20 см равна S=20²=400 см²
Объем прямой призмы V=Sh, где h - высота призмы.
Первоначально объем жидкости в баке V₁=Sh₁
Вместе с деталью жидкость заняла объем V₂=Sh₂
Объем детали равен разности объемов, занимаемых жидкостью до и после помещения в нее детали.
ΔV=V₂-V₁=Sh₂-Sh₁=S(h₂-h₁)
h₂-h₁=10 см, поэтому
ΔV=400*10=4000 см³=4 дм³
Объем прямой призмы V=Sh, где h - высота призмы.
Первоначально объем жидкости в баке V₁=Sh₁
Вместе с деталью жидкость заняла объем V₂=Sh₂
Объем детали равен разности объемов, занимаемых жидкостью до и после помещения в нее детали.
ΔV=V₂-V₁=Sh₂-Sh₁=S(h₂-h₁)
h₂-h₁=10 см, поэтому
ΔV=400*10=4000 см³=4 дм³
0
·
Хороший ответ
28 декабря 2022 10:33
Остались вопросы?
Еще вопросы по категории Алгебра
Вычислите рациональным способом √14400...
Сравнить числа 1,2 и 5/4...
Квадратный корень из числа 28...
из двух городов выехали одновременно навстречу друг другу два автомобиля со скоростями 70 и 50...
В городе N есть ровно три памятника. Однажды в этот город приехала группа из 42 туристов. Каждый из них сделал не более одной фотографии каждого из тр...
Все предметы