Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
26 декабря 2022 22:11
480
Периметр правильного шестиугольника равен 120. Найдите диаметр описанной около этого шестиугольника окружности.
2
ответа
D (диаметр) = 2 * R (радиус)
R = x : ( 2 * sin a/2 ) , Значит D = ( 2 * x ) : ( 2 * sin a/2 ) , где
x - сторона шестиугольника = P (периметр) : 6 = 120 : 6 = 20
a - центральный угол шестиугольника = 360* (градусов) : 6 = 60* (градусов)
D = ( 2 * 20 ) : ( 2 * sin 60/2 ) = 40 : ( 2 * sin 30 ) = 40 : ( 2 * 0,5 ) = 40 : 1 = 40
Ответ: 40.
R = x : ( 2 * sin a/2 ) , Значит D = ( 2 * x ) : ( 2 * sin a/2 ) , где
x - сторона шестиугольника = P (периметр) : 6 = 120 : 6 = 20
a - центральный угол шестиугольника = 360* (градусов) : 6 = 60* (градусов)
D = ( 2 * 20 ) : ( 2 * sin 60/2 ) = 40 : ( 2 * sin 30 ) = 40 : ( 2 * 0,5 ) = 40 : 1 = 40
Ответ: 40.
0
·
Хороший ответ
28 декабря 2022 22:11
P₆=120 -периметр шестиугольника
P₆=6a
6a=120
a=120:6=20 -сторона шестиугольника
R₆=а=20-диаметр окружности описанной около правильного шестиугольника
D=2R₆=2*20=40-диметр окружности описанной около правильного шестиугольника
P₆=6a
6a=120
a=120:6=20 -сторона шестиугольника
R₆=а=20-диаметр окружности описанной около правильного шестиугольника
D=2R₆=2*20=40-диметр окружности описанной около правильного шестиугольника
0
28 декабря 2022 22:11
Остались вопросы?
Еще вопросы по категории Геометрия
Что такое компланарные вектора?...
ПОМОГИТЕ ОЧЕНЬ НУЖНО Ребро куба равно (а). Найдите площадь сечения куба плоскостью , которая проходит через ребро основания куба и образует с плоскост...
Перпендикуляр, проведённый из точки окружности к диаметру, делит его на два отрезка, один из которых относится к диаметру как 9:25. Длина меньшей хорд...
осевым сечением цилиндра является квадрат, диагональ которого равна 8 sqrt 2 см. найдите объем цилиндра...
Найдите угол между данными сторонами тупоугольного треугольника KMN, если KM = 12 см, MN = 10 см, площадь треугольника равна 30 корней из...