Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
26 декабря 2022 23:24
7818
Cos2x+sin^2x=0,25 + отобрать корни на отрезке [3pi;9pi/2]
2
ответа
Распишем cos2x как 1-2sin²x
1-2sin²x+sin²x=0,25
-sin²x=-0,75
sin²x=0,75
sin²x=
sinx=
sinx=
sinx=a
x=(-1)
arcsina+πn n принадлежит z
x=(-1)
·
+πn n принадлежит z
sinx=
x=
n n принадлежит z
x=
+2πn n принадлежит z
К твоему отрезку принадлежит только первый корень
x=(-1)
·
+πn n принадлежит z
1-2sin²x+sin²x=0,25
-sin²x=-0,75
sin²x=0,75
sin²x=
sinx=
sinx=
sinx=a
x=(-1)
x=(-1)
sinx=
x=
x=
К твоему отрезку принадлежит только первый корень
x=(-1)
0
·
Хороший ответ
28 декабря 2022 23:24
Остались вопросы?
Еще вопросы по категории Алгебра
В доме 90 квартир,которые распределяются по жребию.Какова вероятность того,что жильцу не достанется квартира на первом этаже,если таких квартир 6. Зад...
Докажите тождество 3/2a-3 - 8a^3-18a/4a^2+9 × (2a/4a^2-12a+9 - 3/4a^2-9)= -1...
Сравните arctg (-5) и arctg (0)...
На рисунке изображён график производной функции, определённой на интервале (-6; 6). Найдите точки экстремума функции на интервале (-4;5)....
Решите уравнение 2SIN^2X=COS((3PI/2)-X) Найдите все корни этого уравнения, принадлежащие отрезку [-5Pi/2;-Pi]...