Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
26 декабря 2022 23:24
7429
Cos2x+sin^2x=0,25 + отобрать корни на отрезке [3pi;9pi/2]
2
ответа
Распишем cos2x как 1-2sin²x
1-2sin²x+sin²x=0,25
-sin²x=-0,75
sin²x=0,75
sin²x=
sinx=
sinx=
sinx=a
x=(-1)
arcsina+πn n принадлежит z
x=(-1)
·
+πn n принадлежит z
sinx=
x=
n n принадлежит z
x=
+2πn n принадлежит z
К твоему отрезку принадлежит только первый корень
x=(-1)
·
+πn n принадлежит z
1-2sin²x+sin²x=0,25
-sin²x=-0,75
sin²x=0,75
sin²x=
sinx=
sinx=
sinx=a
x=(-1)
x=(-1)
sinx=
x=
x=
К твоему отрезку принадлежит только первый корень
x=(-1)
0
·
Хороший ответ
28 декабря 2022 23:24
Остались вопросы?
Еще вопросы по категории Алгебра
Является ли число -6 членом арифметической прогрессии (Сn) в которой c1=30 и c7=21?...
Как сократить дробь со степенями?...
Периметр прямоугольника равен 28 см, а его диагональ равна 10 см. Найдите площадь прямоугольника. ...
В доме 90 квартир,которые распределяются по жребию.Какова вероятность того,что жильцу не достанется квартира на первом этаже,если таких квартир 6. Зад...
Вычислите: 1) cos 225° 2) tg 330°...