Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
6^x+(1/6)^x > 2
6^x+1/(6^x) > 2
Пусть 6^x=t>0
Тогда t+1/t>2
Умножим обе части неравенства на t>0:
t^2+1>2t
t^2-2t+1>0
(t-1)^2>0 - выполняется для всех t, кроме t=1
Тогда 6^x≠1, x≠0.
Таким образом, x∈(-∞;0)∪(0;+∞)
6^x+1/(6^x) > 2
Пусть 6^x=t>0
Тогда t+1/t>2
Умножим обе части неравенства на t>0:
t^2+1>2t
t^2-2t+1>0
(t-1)^2>0 - выполняется для всех t, кроме t=1
Тогда 6^x≠1, x≠0.
Таким образом, x∈(-∞;0)∪(0;+∞)
0
·
Хороший ответ
28 декабря 2022 23:42
Остались вопросы?
Еще вопросы по категории Алгебра
Какое из следующих выражений равно 25*5? В ответе укажите номер правильного варианта....
Ctgx=1/3 чему равен ответ...
Решить тригонометрическое уравнение...
Найдите корень уравнения (х-1)^3=8...
СРОЧНО!!! Известно, что стороны прямоугольника относятся как 2:21, площадь прямоугольника равна 378. Найди периметр данного прямоугольника....