Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
27 декабря 2022 07:24
2356
1. Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 20, а площадь поверхности равна 1760.2. В правильной четырехугольной пирамиде SABCD точка О - центр основания, S - вершина, SD = 15, AC = 24. Найдите длину отрезка SO.
3. Площадь осевого сечения цилиндра равна 4. Найдите площадь боковой поверхности цилиндра, деленную на п.
1
ответ
1. ABCD - квадрат со стороной 20, а площадь поверхности призмы равна 1760. Sп=2So+Sб или 1760=2*20*20+Sб. => Sбок=1760-800=960. Sбок=4*Sграни => Sграни= 960:4=240. Sграни=сторона основания, умноженная на боковое ребро. Боковое ребро равно 240:20=12.
Ответ: 12 ед.
2. ABCD - квадрат. АС=24, АС=BD (диагонали квадрата), DO=12 (как половина диагонали), SD=15. По Пифагору SO=√(SD²-DO²)=√(225-144) =√81 = 9 ед.
Ответ: SO=9 ед.
3. Sсеч = 2*R*h = 4 (прямоугольник). Sбок= 2*π*R*h = 4π (боковая поверхность).
Ответ: Sбок/π = 4 ед.
Ответ: 12 ед.
2. ABCD - квадрат. АС=24, АС=BD (диагонали квадрата), DO=12 (как половина диагонали), SD=15. По Пифагору SO=√(SD²-DO²)=√(225-144) =√81 = 9 ед.
Ответ: SO=9 ед.
3. Sсеч = 2*R*h = 4 (прямоугольник). Sбок= 2*π*R*h = 4π (боковая поверхность).
Ответ: Sбок/π = 4 ед.
0
·
Хороший ответ
29 декабря 2022 07:24
Остались вопросы?
Еще вопросы по категории Геометрия
Найдите площадь боковой поверхности правильной треугольной усеченной пирамиды, стороны оснований которой равны 3 и 11 см, а боковое ребро 5 см...
Дан параллелепипед ABCDA1B1C1D1. Найдите сумму векторов: (над буквами векторы) а) AB+B1C1+DD1+CD б) B1C1+AB+DD1+CB1+BC+A1A в) BA+AC+CB++DC+DA...
На рисунке 338 BD перпендикулярен BC. Угол между биссектрисами углов ABD и DBC равен 55 градусов. Найдите угол ABD....
Чему равен центральный угол, если соответствующий ему вписанный угол равен 28,6°? Ответ: ∡ EOF = ссылка на построение...
Площадь вписанного в окружность треугольника ,описанного около окружности треугольника...
Все предметы