Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
27 декабря 2022 07:24
2899
1. Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 20, а площадь поверхности равна 1760.2. В правильной четырехугольной пирамиде SABCD точка О - центр основания, S - вершина, SD = 15, AC = 24. Найдите длину отрезка SO.
3. Площадь осевого сечения цилиндра равна 4. Найдите площадь боковой поверхности цилиндра, деленную на п.
1
ответ
1. ABCD - квадрат со стороной 20, а площадь поверхности призмы равна 1760. Sп=2So+Sб или 1760=2*20*20+Sб. => Sбок=1760-800=960. Sбок=4*Sграни => Sграни= 960:4=240. Sграни=сторона основания, умноженная на боковое ребро. Боковое ребро равно 240:20=12.
Ответ: 12 ед.
2. ABCD - квадрат. АС=24, АС=BD (диагонали квадрата), DO=12 (как половина диагонали), SD=15. По Пифагору SO=√(SD²-DO²)=√(225-144) =√81 = 9 ед.
Ответ: SO=9 ед.
3. Sсеч = 2*R*h = 4 (прямоугольник). Sбок= 2*π*R*h = 4π (боковая поверхность).
Ответ: Sбок/π = 4 ед.
Ответ: 12 ед.
2. ABCD - квадрат. АС=24, АС=BD (диагонали квадрата), DO=12 (как половина диагонали), SD=15. По Пифагору SO=√(SD²-DO²)=√(225-144) =√81 = 9 ед.
Ответ: SO=9 ед.
3. Sсеч = 2*R*h = 4 (прямоугольник). Sбок= 2*π*R*h = 4π (боковая поверхность).
Ответ: Sбок/π = 4 ед.

0
·
Хороший ответ
29 декабря 2022 07:24
Остались вопросы?
Еще вопросы по категории Геометрия
В тетраэдре ABCD DO-перпендикуляр к плоскости ABC. Докажите , что если ребра DA , DB и DC образуют одинаковые углы с плоскостью ABC, то точка O- центр...
Свойства вписанного угла. Формулировка и доказательство...
Диагонали ромба равны 12 см и 6 см. Найдите сторону ромба ?...
Треугольник MPK равнобедренный, его основание MK равно 16 м, а периметр равен 52 м. Найдите длину отрезка AP (А - точка касания вписанной окружности с...
Чему равны углы треугольника, на которые биссектриса разбивает равносторонний треугольник? С рисунком, пожалуйста...