Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
4*sin(x)^2 - 2*sin(x)*cos(x) - 4*cos(x)^2 = 1
4*sin(x)^2 - 2*sin(x)*cos(x) - 4*cos(x)^2 = sin(x)^2 + cos(x)^2
3*sin(x)^2 - 2*sin(x)*cos(x) - 5*cos(x)^2 = 0
Разделим обе части на cos(x)^2 ≠ 0.
3*tg(x)^2 - 2*tg(x) - 5 = 0
Пусть tg(x) = t, тогда получаем квадратное уравнение относительно t.
3*t^2 - 2*t - 5 = 0
Его корнями являются t = -1 и t = 5/3.
В итоге получим совокупность уравнений:
tg(x) = -1,
tg(x) = 5/3.
Решения первого уравнения:
x = -π/4 + πn, n∈Z
Решения второго уравнения:
x = arctg(5/3) + πk, k∈Z.
Ответом будет совокупность этих решений.
4*sin(x)^2 - 2*sin(x)*cos(x) - 4*cos(x)^2 = sin(x)^2 + cos(x)^2
3*sin(x)^2 - 2*sin(x)*cos(x) - 5*cos(x)^2 = 0
Разделим обе части на cos(x)^2 ≠ 0.
3*tg(x)^2 - 2*tg(x) - 5 = 0
Пусть tg(x) = t, тогда получаем квадратное уравнение относительно t.
3*t^2 - 2*t - 5 = 0
Его корнями являются t = -1 и t = 5/3.
В итоге получим совокупность уравнений:
tg(x) = -1,
tg(x) = 5/3.
Решения первого уравнения:
x = -π/4 + πn, n∈Z
Решения второго уравнения:
x = arctg(5/3) + πk, k∈Z.
Ответом будет совокупность этих решений.
0
·
Хороший ответ
16 января 2023 21:26
Остались вопросы?
Еще вопросы по категории Алгебра
Алексей Юрьевич решил построить на дачном участке теплицу длиной NP = 4,5 м. Для этого он сделал прямоугольный фундамент. Для каркаса теплицы Алексей...
На диагонали BD параллелограмма ABCD отметили точки E и F так, что угол BCE= углу DAF( точка E лежит между точками B и F ), докажите, что CE=AF....
СРОЧНО!! Точка О – центр правильного треугольника АВС, ОМ – перпендикуляр к плоскости АВС и ОМ=√3см, АВ=3√3см. Найдите угол наклона МА к плоскости тр...
Найдите все значения x, при которых f'(x)<=0, если f(x)=6x-x^3....
Велосипедист проезжает 45 км за то же время, что и пешеход проходит 18 км. Велосипедист проезжает на 9 км в час больше, чем проходит пешеход. Какая ск...
Все предметы