Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
4*sin(x)^2 - 2*sin(x)*cos(x) - 4*cos(x)^2 = 1
4*sin(x)^2 - 2*sin(x)*cos(x) - 4*cos(x)^2 = sin(x)^2 + cos(x)^2
3*sin(x)^2 - 2*sin(x)*cos(x) - 5*cos(x)^2 = 0
Разделим обе части на cos(x)^2 ≠ 0.
3*tg(x)^2 - 2*tg(x) - 5 = 0
Пусть tg(x) = t, тогда получаем квадратное уравнение относительно t.
3*t^2 - 2*t - 5 = 0
Его корнями являются t = -1 и t = 5/3.
В итоге получим совокупность уравнений:
tg(x) = -1,
tg(x) = 5/3.
Решения первого уравнения:
x = -π/4 + πn, n∈Z
Решения второго уравнения:
x = arctg(5/3) + πk, k∈Z.
Ответом будет совокупность этих решений.
4*sin(x)^2 - 2*sin(x)*cos(x) - 4*cos(x)^2 = sin(x)^2 + cos(x)^2
3*sin(x)^2 - 2*sin(x)*cos(x) - 5*cos(x)^2 = 0
Разделим обе части на cos(x)^2 ≠ 0.
3*tg(x)^2 - 2*tg(x) - 5 = 0
Пусть tg(x) = t, тогда получаем квадратное уравнение относительно t.
3*t^2 - 2*t - 5 = 0
Его корнями являются t = -1 и t = 5/3.
В итоге получим совокупность уравнений:
tg(x) = -1,
tg(x) = 5/3.
Решения первого уравнения:
x = -π/4 + πn, n∈Z
Решения второго уравнения:
x = arctg(5/3) + πk, k∈Z.
Ответом будет совокупность этих решений.
0
·
Хороший ответ
16 января 2023 21:26
Остались вопросы?
Еще вопросы по категории Алгебра
Log5 1=0 докажите срочно очень срочно...
Решите уравнение: sin x=0,5...
Решительно пожалуйста задачу. (желательно первые действия, через пропорцию) в школе французский язык изучают 162 учащихся , что составляет 18 проценто...
Tg(п/6 - x) - корень из 3 > либо = 0 Должно получиться (-п/3 + пn; -п/6 + пn]....
найдите объем правильной четырехугольной пирамиды сторона основания которой равна 6 а боковое ребро равно корень из 34...
Все предметы