Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
14 января 2023 22:40
1368
Докажите, что диагонали ромба взаимно перпендикулярны.
1
ответ
Дано: АВСD – ромб, BD пересекается с AC в точке O. Доказать: что BD перпендикулярна AC, и каждая диагональ делит соответствующие углы ромба пополам например, что угол ВАС = углу DАС. Доказательство: 1)АB = АD по определению ромба,поэтому треугольник ВАD равнобедренный; 2)так как ромб – параллелограмм, его диагональ пересекаются и делятся пополам; 3)АО – медиана равнобедренного ВАD; 4)АО – высота и биссектриса; 5)поэтому BD перпендикулярно AC и треугольник ВАС = треугольник DАС. Теорема доказана.
0
·
Хороший ответ
16 января 2023 22:40
Остались вопросы?
Еще вопросы по категории Геометрия
на продолжении стороны BC равнобедренного треугольника ABC с основанием AC отметили точку D так, что CD=AC, точка C находится между точками B и D. Най...
Какое государство занимает территорию материка...
Как сделать пирамиду (геометрическая фигура) из бумаги БЕЗ КЛЕЯ?...
Помогите пожалуйста решить, с подробными действиями....
В равнобедренном треугольнике MPK стороны MP и PK равны, угол К=40 градусов, MK=9 см. Из вершины P проведена биссектриса PH. Постройте чертёж. Найдите...