Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
14 января 2023 22:40
1546
Докажите, что диагонали ромба взаимно перпендикулярны.
1
ответ
Дано: АВСD – ромб, BD пересекается с AC в точке O. Доказать: что BD перпендикулярна AC, и каждая диагональ делит соответствующие углы ромба пополам например, что угол ВАС = углу DАС. Доказательство: 1)АB = АD по определению ромба,поэтому треугольник ВАD равнобедренный; 2)так как ромб – параллелограмм, его диагональ пересекаются и делятся пополам; 3)АО – медиана равнобедренного ВАD; 4)АО – высота и биссектриса; 5)поэтому BD перпендикулярно AC и треугольник ВАС = треугольник DАС. Теорема доказана.
0
·
Хороший ответ
16 января 2023 22:40
Остались вопросы?
Еще вопросы по категории Геометрия
Кто создал теорему Пифагора? И в каком году?...
В правильной треугольной пирамиде SABC с основанием ABC известны ребра: AB=8√3, SC=17. Найдите угол, образованный плоскостью основания и прямой AM, гд...
Сформулируйте основные свойства площадей многоугольника...
В правильной четырехугольной пирамиде Sabcd сторона основания равна 4 см, боковое ребро 5 см. Найти: а) Плошадь родной поверхности пирамиды б) Объём...
Дано: АВСД-прямоугольник, ВД и АС-диагонали, ВД=10, ВС= 5 корень из 3, угол ВОС= 120 градусов, угол ВОС и угол АОД- вертикальные. Найти: СД...