Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
14 января 2023 23:36
970
Найдите сумму всех трехзначных чисел от 100 до 550,которые при делении на 7 дают в остатке 5. Помогите пожалуйста решить!
1
ответ
Все трехзначные числа, делящиеся на 7 и дающие в остатке 5 представляют собой арифметическую прогрессию по формуле 7n+5.
Найдем первый и последний член прогрессии:
100<7n+5<550
95<7n<545
13 4/7<n<77 6/7 округляем до целого:
14<n<77
Значит членов последовательности:
N=77-14+1=64
Первый член последовательности:
a₁=7*14+5=103
a₆₄=7*77+5=544

Ответ 20704
Найдем первый и последний член прогрессии:
100<7n+5<550
95<7n<545
13 4/7<n<77 6/7 округляем до целого:
14<n<77
Значит членов последовательности:
N=77-14+1=64
Первый член последовательности:
a₁=7*14+5=103
a₆₄=7*77+5=544
Ответ 20704
0
·
Хороший ответ
16 января 2023 23:36
Остались вопросы?
Еще вопросы по категории Алгебра
Как по графику найти значение аргумента, которым соответствует данное значение функции?...
Помогите пожалуйста срочно надо...
Касса Художественного теятра,вместе продал 400 билетов.Одна касса продала около на 64 билетов больше ,чем вторая касса.Сколько билетов продала каждая...
Составьте приведенное квадратное уравнение, сумма корней которого равна -10, а произведение - числу 8....
Sin 3x - п/4=0 помогите пожалуйста...