Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
14 января 2023 23:36
827
Найдите сумму всех трехзначных чисел от 100 до 550,которые при делении на 7 дают в остатке 5. Помогите пожалуйста решить!
1
ответ
Все трехзначные числа, делящиеся на 7 и дающие в остатке 5 представляют собой арифметическую прогрессию по формуле 7n+5.
Найдем первый и последний член прогрессии:
100<7n+5<550
95<7n<545
13 4/7<n<77 6/7 округляем до целого:
14<n<77
Значит членов последовательности:
N=77-14+1=64
Первый член последовательности:
a₁=7*14+5=103
a₆₄=7*77+5=544
Ответ 20704
Найдем первый и последний член прогрессии:
100<7n+5<550
95<7n<545
13 4/7<n<77 6/7 округляем до целого:
14<n<77
Значит членов последовательности:
N=77-14+1=64
Первый член последовательности:
a₁=7*14+5=103
a₆₄=7*77+5=544
Ответ 20704
0
·
Хороший ответ
16 января 2023 23:36
Остались вопросы?
Еще вопросы по категории Алгебра
(√7-√5)(√7+√5) помогите выполнить...
Для станций, указанных в таблице, определите, какими цифрами они обозначены на схеме. Заполните таблицу, в ответ запишите посл...
sin(-a)+cos(п+a) 1+2 cos(п/2-a)cos(-a)...
Чему равна длина окружности, если радиус равен 3.8 метра...
Пусть p(x) это многочлен степени n такой, что |p(x)|<1 для всех действительных x таких, что |x|≤1 . Верно ли, что |p(2)|<...
Все предметы