Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
15 января 2023 02:53
850
конус вписан в шар, диаметр основания конуса равен радиусу шара. объем конуса равен 6 найдите объем шара
1
ответ
Подобные задачи чаще даются с радиусом конуса, равным радиусу шара.
Т.к. диаметр основания конуса равен радиусу шара, радиус основания конуса равен половине радиуса шара, т.е. R/2
Высота конуса равна радиусу шара плюс высота правильного треугольника со сторонами, равными радиусу шара ( см. рисунок).
Формула объема шара
V=4πR³/3
Формула объема конуса
V=πr²h/3
1) Вычислим объем конуса, подставив в формулу радиус и высоту, выраженные через R.
2) Разделив выражение объема шара на найденный объем конуса, вычислим во сколько раз объем шара больше объема данного конуса.
3) Умножив 6 ( объем конуса) на число отношения объемов, получим объем шара.
Вычисления даны в приложении.
Результат:
объем шара равен 192*(2-√3) или ≈51,446 (ед. объема)
Т.к. диаметр основания конуса равен радиусу шара, радиус основания конуса равен половине радиуса шара, т.е. R/2
Высота конуса равна радиусу шара плюс высота правильного треугольника со сторонами, равными радиусу шара ( см. рисунок).
Формула объема шара
V=4πR³/3
Формула объема конуса
V=πr²h/3
1) Вычислим объем конуса, подставив в формулу радиус и высоту, выраженные через R.
2) Разделив выражение объема шара на найденный объем конуса, вычислим во сколько раз объем шара больше объема данного конуса.
3) Умножив 6 ( объем конуса) на число отношения объемов, получим объем шара.
Вычисления даны в приложении.
Результат:
объем шара равен 192*(2-√3) или ≈51,446 (ед. объема)

0
·
Хороший ответ
17 января 2023 02:53
Остались вопросы?
Еще вопросы по категории Геометрия
Синус острого угла A треугольника ABC равен √7÷4. Найдите cos A...
Верно ли следующее утверждение: прямая, пересекающая одну из расположенных в пространстве параллельных прямых пересекает и другую. Поясните...
Какая формула для вычисления радиуса окружности, вписанной в выпуклый многоугольник, подскажите, пожалуйста...
SABCD - правильная пирамида, SM и SK - апофемы, S(ABCD)=2S(KSM), площадь боковой поверхности равна 16√5. Найти S(ABCD)....
Практические способы построения параллельных прямых. Срочно нужно! Помогите!...