Лучшие помощники
15 января 2023 04:03
669

Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 20. Найдите BC, если AC=32.

1 ответ
Посмотреть ответы
Все вершины треугольника лежат на описанной окружности.
Если центр описанной окружности лежит на стороне треугольника, то эта сторона является диаметром окружности. Значит противоположный угол опирается на полуокружность, он вписанный и поэтому равен половине дуги, на которую опирается, т.е. 90°, ⇒
ΔАВС прямоугольный, АВ = 2R = 2 · 20 = 40.
По теореме Пифагора:
ВС = √(АВ² - АС²) = √(40² - 32²) = √((40 - 32)(40 + 32)) = √(8 · 72) =
= √(2 · 4 · 2 · 36) = 2 · 2 · 6 = 24
image
0
·
Хороший ответ
17 января 2023 04:03
Остались вопросы?
Найти нужный