Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
15 января 2023 04:03
669
Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 20. Найдите BC, если AC=32.
1
ответ
Все вершины треугольника лежат на описанной окружности.
Если центр описанной окружности лежит на стороне треугольника, то эта сторона является диаметром окружности. Значит противоположный угол опирается на полуокружность, он вписанный и поэтому равен половине дуги, на которую опирается, т.е. 90°, ⇒
ΔАВС прямоугольный, АВ = 2R = 2 · 20 = 40.
По теореме Пифагора:
ВС = √(АВ² - АС²) = √(40² - 32²) = √((40 - 32)(40 + 32)) = √(8 · 72) =
= √(2 · 4 · 2 · 36) = 2 · 2 · 6 = 24
Если центр описанной окружности лежит на стороне треугольника, то эта сторона является диаметром окружности. Значит противоположный угол опирается на полуокружность, он вписанный и поэтому равен половине дуги, на которую опирается, т.е. 90°, ⇒
ΔАВС прямоугольный, АВ = 2R = 2 · 20 = 40.
По теореме Пифагора:
ВС = √(АВ² - АС²) = √(40² - 32²) = √((40 - 32)(40 + 32)) = √(8 · 72) =
= √(2 · 4 · 2 · 36) = 2 · 2 · 6 = 24
0
·
Хороший ответ
17 января 2023 04:03
Остались вопросы?
Еще вопросы по категории Геометрия
Цилиндр и конус имеют общее основание и общую высоту. Вычисли объём конуса, если объём цилиндра равен 14,58. Чему равен объём конуса...
...
Докажите что площадь ромба равна половине произведения его диагоналей рис 20.6...
Решите пожалуйста...
Пожалуйста, помогите!! найдите площадь кругового сектора, если его радиус равен 7 см и длина дуги равна 12 см...
Все предметы