Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
15 января 2023 04:11
1663
Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 3 и 4, и боковым ребром, равным 5.
1
ответ
Площадь полной поверхности призмы равна сумме двух площадей оснований и площади боковой поверхности.
Площадь основания - площадь ромба - равна
So=(1/2)*d*D =(1/2)3*4=6 ед².
Диагонали ромба взаимно перпендикулярны и делятся точкой пересечения пополам. Тогда
сторона ромба равна по Пифагору:
а=4*√[(D/2)²+(d/2)²]=4*√(4+2,25)=2,5.
Sб=Р*Н (Р - периметр, Н - высота призмы - боковое ребро).
Sб=10*5=50 ед².
S=2*So+Sб=12+50=62 ед².
Площадь основания - площадь ромба - равна
So=(1/2)*d*D =(1/2)3*4=6 ед².
Диагонали ромба взаимно перпендикулярны и делятся точкой пересечения пополам. Тогда
сторона ромба равна по Пифагору:
а=4*√[(D/2)²+(d/2)²]=4*√(4+2,25)=2,5.
Sб=Р*Н (Р - периметр, Н - высота призмы - боковое ребро).
Sб=10*5=50 ед².
S=2*So+Sб=12+50=62 ед².
0
·
Хороший ответ
17 января 2023 04:11
Остались вопросы?
Еще вопросы по категории Геометрия
в прямом параллелепипеде стороны основания равны 3 см и 4 см, а угол между ними-60. Площадь боковой поверхности ровна 15√3 см². Найти объём параллелеп...
Ребят помогите плиззз. Дан неразвёрнутый угол и отрезок. На сторонах данного угла построить точки, удалённые от вершин угла на расстоянии равном полов...
В треугольнике ABC угол C равен 90,CH —высота,ВС=3,sinA=1/6.НайдитеAH....
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу другого треугольника,то такие треугольники равны. Вер...
Синус острого угла A треугольника ABC равен √7÷4. Найдите cos A...