Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
15 января 2023 08:34
795
Объясните, пожалуйста, как решать данную задачу: Две стороны треугольника равны 17 и 8 см, а косинус угла между ними равен (15)/(17). Найдите площадь этого треугольника.
2
ответа
Ответ:
32 см².
Объяснение:
Площадь треугольника можно найти как полупроизведение двух сторон треугольника на синус угла между ними, т.е. по формуле:
,
Найдем синус угла , используя основное тригонометрическое тождество

Тогда площадь треугольника
см².
32 см².
Объяснение:
Площадь треугольника можно найти как полупроизведение двух сторон треугольника на синус угла между ними, т.е. по формуле:
Найдем синус угла , используя основное тригонометрическое тождество
Тогда площадь треугольника
0
·
Хороший ответ
17 января 2023 08:34
Ответ:
32 см²
Объяснение:
Найдем площадь треугольника через синус угла.
Сделаем необходимое преобразование:
sinα=√(1-cos²α)=√(1-225/289)=√(64/289)=8/17
Найдем площадь треугольника по формуле
S=1/2 * a * b * sina = 1/2 * 17 * 8 * 8/17 = 32 см²
32 см²
Объяснение:
Найдем площадь треугольника через синус угла.
Сделаем необходимое преобразование:
sinα=√(1-cos²α)=√(1-225/289)=√(64/289)=8/17
Найдем площадь треугольника по формуле
S=1/2 * a * b * sina = 1/2 * 17 * 8 * 8/17 = 32 см²
0
17 января 2023 08:34
Остались вопросы?
Еще вопросы по категории Геометрия
человек,ростом 1.9 стоит на расстоянии 6 метров от столба,на котором висит фонарь на высоте 7.6 м. Найдите длину тени человека в метрах....
Высота BH ромба ABCD делит его сторону AD на отрезки AH=44 и HD=11. Найдите площадь ромба....
Основанием прямоугольного параллелепипеда АВСДА1В1С1Д1, является квадрат со стороной равной 2. На боковом ребре ДД1, равном 3 выбрана точка К, которая...
Основания трапеции равны 1 и 11. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из её диагоналей...
Ребро правильного тетраэдра DABC равно а. Постройте сечение тетраэдра, проходящее через середины ребер DA и AB параллельно ребру BC, и найдите площадь...