Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
15 января 2023 08:35
855
Диаметр основания конуса равен 6, а угол при вершине осевого сечения равен 90°. Вычислите объем конуса, деленный на π.
1
ответ
V=
*
*r²*h, где r-радиус основания,h-высота конуса
r=d:2=6:2=3
Сечение представляет собой равнобедренный треугольник, следовательно высота опущенная к основанию, является биссектрисой угла из которого опущена.
tg45°=
⇒h=3
V=
*
*3²*3=9
=9
r=d:2=6:2=3
Сечение представляет собой равнобедренный треугольник, следовательно высота опущенная к основанию, является биссектрисой угла из которого опущена.
tg45°=
V=
0
·
Хороший ответ
17 января 2023 08:35
Остались вопросы?
Еще вопросы по категории Геометрия
В треугольнике ABC угол С = 90 градусов, АВ= 25, sin A = 0.8. Найдите высоту CH...
помогите пожалуйста, очень срочно!!2,4,6,8...
В треугольнике АВС стороны АВ и ВС равны, точка О лежит на биссектрисе BN. Докажите что АО=ОС....
объем треугольной призмы, отсекаемой от куба плоскостью, проходящей через середину двух ребер, выходящих из одной вершины, и параллельной третьему реб...
3. В прямоугольном треугольнике медиана, опущенная из прямого угла, равна одному из катетов. Найдите меньший угол треугольника....