Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
15 января 2023 08:46
1091
Найдите площадь параллелограмма, если две его стороны равны 8 и 10, а угол между ними равен 30*.
2
ответа
Площадь параллелограмма вычисляется по формуле
S=a*b*sinα=8*10*sin30=8*10*1/2=40
Ответ 40
S=a*b*sinα=8*10*sin30=8*10*1/2=40
Ответ 40
0
·
Хороший ответ
17 января 2023 08:46
есть формула площади: нужно перемножить две стороны на синус угла между ними
в нашем случае: 8*10* синус30° = 80*1\2=40 (см квадратных)
хинт: синус 30°= 1/2 (как вы поняли)
в нашем случае: 8*10* синус30° = 80*1\2=40 (см квадратных)
хинт: синус 30°= 1/2 (как вы поняли)
0
17 января 2023 08:46
Остались вопросы?
Еще вопросы по категории Геометрия
радиус окружности, вписанной в правильный шестиугольник, равен 3 см. найдите радиус окружности, описанной около данного шестиугольника...
Как найти sin а, зная cos a?...
сторона правильного треугольника равна корень из 3. найдите радиус окружности вписанной в этот треугольник....
СРОЧНО ПОЖАЛУЙСТА ПОМОГИТЕ! Стороны параллелограмма равны 6 см и 24 см, а высота, проведённая к большей стороне, равна 3,6 см. Вычисли высоту, провед...
В треугольнике ABC угол C равен 90 градусов, BC=12, tgA= 1,5. найдите АC....