Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
15 января 2023 14:48
1466
Определите угол при вершине осевого сечения конуса, если разверткой его боковой поверхности являеться сектор с дугой, равной 120 градусов.
1
ответ
Сектор - часть круга. Длина дуги сектора вычисляется по формуле:
L=π*r*n/180°.
В нашем случае n=120°, L=π*r(2/3).
Заметим, что в этой формуле r = l - образующая конуса, а L - это длина
окружности нашего конуса. Радиус окружности основания конуса находим по формуле: L=2π*R или в нашем случае
π*r*(2/3)=2π*R, отсюда R=π*r*2/(3*2π)=r/3.
Теперь рассмотрим осевое сечение конуса.
Это равнобедренный треугольник с боковыми сторонами - образующей конуса и основанием - диаметром окружности основания конуса.
Причем высота конуса SH - это и биссектриса и медиана этого треугольника.
В прямоугольном треугольнике SHC синус угла HSC равен отношению
противолежащего катета (R) к гипотенузе (l=r) или Sin(<HSC)=(r/3)/r=1/3.
Заметим, что <HSC - это половина искомого угла при вершине конуса (так как SH - биссектриса).
По формуле Sinα=2Sin(α/2)*Cos(α/2) найдем искомый угол α.
Cosα=√(1-sin²α)=√(1-1/9)=√8/3.
Sinα=2*(1/3)*(√8/3)=2√8/9.
Ответ: угол при вершине конуса равен arcsin(4√2/9).
α≈39°
Угол при вершине осевого сечения конуса можно найти по теореме косинусов:
Cosα=(a²+b²-c²)2ab, где α - угол между сторонами a и b треугольника.
Тогда
Cosα=(2r²-(4/9)r²)/2r² = 14/18=7/9≈0,777.
α=arccos0,777 или α≈39°.
L=π*r*n/180°.
В нашем случае n=120°, L=π*r(2/3).
Заметим, что в этой формуле r = l - образующая конуса, а L - это длина
окружности нашего конуса. Радиус окружности основания конуса находим по формуле: L=2π*R или в нашем случае
π*r*(2/3)=2π*R, отсюда R=π*r*2/(3*2π)=r/3.
Теперь рассмотрим осевое сечение конуса.
Это равнобедренный треугольник с боковыми сторонами - образующей конуса и основанием - диаметром окружности основания конуса.
Причем высота конуса SH - это и биссектриса и медиана этого треугольника.
В прямоугольном треугольнике SHC синус угла HSC равен отношению
противолежащего катета (R) к гипотенузе (l=r) или Sin(<HSC)=(r/3)/r=1/3.
Заметим, что <HSC - это половина искомого угла при вершине конуса (так как SH - биссектриса).
По формуле Sinα=2Sin(α/2)*Cos(α/2) найдем искомый угол α.
Cosα=√(1-sin²α)=√(1-1/9)=√8/3.
Sinα=2*(1/3)*(√8/3)=2√8/9.
Ответ: угол при вершине конуса равен arcsin(4√2/9).
α≈39°
Угол при вершине осевого сечения конуса можно найти по теореме косинусов:
Cosα=(a²+b²-c²)2ab, где α - угол между сторонами a и b треугольника.
Тогда
Cosα=(2r²-(4/9)r²)/2r² = 14/18=7/9≈0,777.
α=arccos0,777 или α≈39°.

0
·
Хороший ответ
17 января 2023 14:48
Остались вопросы?
Еще вопросы по категории Геометрия
Найдите площадь четырехугольника, изображенного на рисунке. Диагонали четырехугольника перпендикулярны...
В тетраэдре DABC точка Е - середина DB, a М - точка пересечения медиан грани ABC. Разложите вектор ЕМ по векторам DA DB DC...
Какой из перечисленных путешественников исследовал внутренние районы Африки? 1) Дж. Кабот 2) Д. Ливингстон 3) А. Веспуччи 4) А. Макензи...
на сторонах угла ВАС и на его биссектрисе отложены равные отрезки АВ, АС и АD. Величина угла ВDС равна 160 градусов. Определите величину угла ВАС...
Диагонали прямоугольника точкой пересечения делятся пополам? верно ли суждение???...