Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
15 января 2023 14:48
1301
Определите угол при вершине осевого сечения конуса, если разверткой его боковой поверхности являеться сектор с дугой, равной 120 градусов.
1
ответ
Сектор - часть круга. Длина дуги сектора вычисляется по формуле:
L=π*r*n/180°.
В нашем случае n=120°, L=π*r(2/3).
Заметим, что в этой формуле r = l - образующая конуса, а L - это длина
окружности нашего конуса. Радиус окружности основания конуса находим по формуле: L=2π*R или в нашем случае
π*r*(2/3)=2π*R, отсюда R=π*r*2/(3*2π)=r/3.
Теперь рассмотрим осевое сечение конуса.
Это равнобедренный треугольник с боковыми сторонами - образующей конуса и основанием - диаметром окружности основания конуса.
Причем высота конуса SH - это и биссектриса и медиана этого треугольника.
В прямоугольном треугольнике SHC синус угла HSC равен отношению
противолежащего катета (R) к гипотенузе (l=r) или Sin(<HSC)=(r/3)/r=1/3.
Заметим, что <HSC - это половина искомого угла при вершине конуса (так как SH - биссектриса).
По формуле Sinα=2Sin(α/2)*Cos(α/2) найдем искомый угол α.
Cosα=√(1-sin²α)=√(1-1/9)=√8/3.
Sinα=2*(1/3)*(√8/3)=2√8/9.
Ответ: угол при вершине конуса равен arcsin(4√2/9).
α≈39°
Угол при вершине осевого сечения конуса можно найти по теореме косинусов:
Cosα=(a²+b²-c²)2ab, где α - угол между сторонами a и b треугольника.
Тогда
Cosα=(2r²-(4/9)r²)/2r² = 14/18=7/9≈0,777.
α=arccos0,777 или α≈39°.
L=π*r*n/180°.
В нашем случае n=120°, L=π*r(2/3).
Заметим, что в этой формуле r = l - образующая конуса, а L - это длина
окружности нашего конуса. Радиус окружности основания конуса находим по формуле: L=2π*R или в нашем случае
π*r*(2/3)=2π*R, отсюда R=π*r*2/(3*2π)=r/3.
Теперь рассмотрим осевое сечение конуса.
Это равнобедренный треугольник с боковыми сторонами - образующей конуса и основанием - диаметром окружности основания конуса.
Причем высота конуса SH - это и биссектриса и медиана этого треугольника.
В прямоугольном треугольнике SHC синус угла HSC равен отношению
противолежащего катета (R) к гипотенузе (l=r) или Sin(<HSC)=(r/3)/r=1/3.
Заметим, что <HSC - это половина искомого угла при вершине конуса (так как SH - биссектриса).
По формуле Sinα=2Sin(α/2)*Cos(α/2) найдем искомый угол α.
Cosα=√(1-sin²α)=√(1-1/9)=√8/3.
Sinα=2*(1/3)*(√8/3)=2√8/9.
Ответ: угол при вершине конуса равен arcsin(4√2/9).
α≈39°
Угол при вершине осевого сечения конуса можно найти по теореме косинусов:
Cosα=(a²+b²-c²)2ab, где α - угол между сторонами a и b треугольника.
Тогда
Cosα=(2r²-(4/9)r²)/2r² = 14/18=7/9≈0,777.
α=arccos0,777 или α≈39°.

0
·
Хороший ответ
17 января 2023 14:48
Остались вопросы?
Еще вопросы по категории Геометрия
1. Диагонали прямоугольника ABCD пересекаются в точке О. Найдите угол между диагоналями, если угол ABO равен 50 градусов....
Около окружности описана трапеция, периметр который равен 18 см . Найдите ее среднюю линию....
Найти диагонали правильной шестиугольной призмы, каждое ребро которой равно а. Нашла большую диагональ-2а, как найти вторую? (в ответе а*корень из 5)...
Высота BM,проведенная из вершины угла ромба ABCD образует со стороной AB угол 30 градусов, длина диагонали AC равна 6 см . НАЙДИТЕ АМ ЕСЛИ ТОЧКА М ЛЕЖ...
В окружности с центром O проведены диаметр АС и хорда BD пересекаются в точке Mпричем BM =DM Угол BAC =35 градусам Найдите Угол BAD...