Рассмотрим треугольник АВС. По условию, ВС = ВД, значит, углы ВСА и ВДА равны. Также углы ВАС и ВАД являются вертикальными и, следовательно, равны. Из этих двух равенств следует, что треугольники ВСА и ВДА подобны. Так как треугольники ВСА и ВДА подобны, то углы СВА и ДВА также равны. Но угол СВА равен полусумме углов АВС и АВД, а угол ДВА равен полусумме углов АВД и АВС. Значит, углы АВС и АВД равны. Таким образом, мы доказали, что треугольник АВС равнобедренный. Значит, биссектриса угла АВС является высотой и медианой этого треугольника. В частности, она проходит через середину стороны СВ. Теперь рассмотрим треугольник АДС. Угол СДА является вертикальным для угла ВАС, поэтому они равны.