Пусть $AC$ и $BD$ — диагонали параллелограмма $ABCD$, а точка пересечения диагоналей — $O$. Обозначим $h_1$ и $h_2$ — расстояния от вершины $A$ до $BD$ и от вершины $B$ до $AC$ соответственно. Тогда $h_1 = h_2 = \frac{2S_{ABCD}}{AB}$. Заметим, что $S_{ABCD} = S_{AOD} + S_{BOC}$, где $S_{AOD} = \frac12 \cdot AO \cdot h_1$, $S_{BOC} = \frac12 \cdot BO \cdot h_2$, а $S_{ABCD} = AB \cdot h_1$. Таким образом, $AB \cdot h_1 = \frac12 \cdot AO \cdot h_1 + \frac12 \cdot BO \cdot h_2$. Аналогично, $AB \cdot h_2 = \frac12 \cdot CO \cdot h_1 + \frac12 \cdot DO \cdot h_2$. Подставим известные значения: $h_1 = 8\,\text{см}$, $h_2 = 13\,\text{см}$. Обозначим $x = AO$, $y = BO$, $z = CO$, $t = DO$. Получ