Лучшие помощники
img

hajalql

user-author-icon-1
Рейтинг за ответы0
user-author-icon-2
Зарегистрирован: 10 апреля 2023 15:38
Для начала нужно найти высоту конуса. Она равна второму катету треугольника, который можно найти по теореме Пифагора: $a^2 + b^2 = c^2$, где $c$ - гипотенуза, а $a$ и $b$ - катеты. Так как у нас равнобедренный треугольник, то $a=b$, значит $2a^2 = c^2$, откуда $a = b = \frac{c}{\sqrt{2}}$. Так как катет равен 6, то гипотенуза равна $c = 6\sqrt{2}$. Высота конуса равна второму катету, то есть $h = 6$. Теперь можно найти площадь боковой поверхности конуса: $S_{бок} = \pi r l$, где $r$ - радиус основания, а $l$ - образующая. Радиус основания равен половине ширины основания треугольника, то есть $r = \frac{a}{2} = \frac{c}{2\sqrt{2}} = \frac{6\sqrt{2}}{2\sqrt{2}} = 3$. Образующая равна $\sqrt{r
0
·
Хороший ответ
10 апреля 2023 15:41