Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для начала нужно найти высоту конуса. Она равна второму катету треугольника, который можно найти по теореме Пифагора: $a^2 + b^2 = c^2$, где $c$ - гипотенуза, а $a$ и $b$ - катеты. Так как у нас равнобедренный треугольник, то $a=b$, значит $2a^2 = c^2$, откуда $a = b = \frac{c}{\sqrt{2}}$. Так как катет равен 6, то гипотенуза равна $c = 6\sqrt{2}$. Высота конуса равна второму катету, то есть $h = 6$.
Теперь можно найти площадь боковой поверхности конуса: $S_{бок} = \pi r l$, где $r$ - радиус основания, а $l$ - образующая. Радиус основания равен половине ширины основания треугольника, то есть $r = \frac{a}{2} = \frac{c}{2\sqrt{2}} = \frac{6\sqrt{2}}{2\sqrt{2}} = 3$. Образующая равна $\sqrt{r^2 + h^2} = \sqrt{3^2 + 6^2} = 3\sqrt{5}$. Таким образом, $S_{бок} = \pi \cdot 3 \cdot 3\sqrt{5} = 9\pi\sqrt{5}$.
Площадь основания конуса равна площади равнобедренного прямоугольного треугольника, то есть $\frac{1}{2}ab = \frac{1}{2} \cdot 6 \cdot 6 = 18$.
Итого, площадь полной поверхности конуса равна $S = S_{бок} + S_{осн} = 9\pi\sqrt{5} + 18\pi$.
Теперь можно найти площадь боковой поверхности конуса: $S_{бок} = \pi r l$, где $r$ - радиус основания, а $l$ - образующая. Радиус основания равен половине ширины основания треугольника, то есть $r = \frac{a}{2} = \frac{c}{2\sqrt{2}} = \frac{6\sqrt{2}}{2\sqrt{2}} = 3$. Образующая равна $\sqrt{r^2 + h^2} = \sqrt{3^2 + 6^2} = 3\sqrt{5}$. Таким образом, $S_{бок} = \pi \cdot 3 \cdot 3\sqrt{5} = 9\pi\sqrt{5}$.
Площадь основания конуса равна площади равнобедренного прямоугольного треугольника, то есть $\frac{1}{2}ab = \frac{1}{2} \cdot 6 \cdot 6 = 18$.
Итого, площадь полной поверхности конуса равна $S = S_{бок} + S_{осн} = 9\pi\sqrt{5} + 18\pi$.
0
·
Хороший ответ
10 апреля 2023 15:41
Остались вопросы?
Еще вопросы по категории Геометрия
Какое из следующих утверждений верно? 1) В параллелограмме есть два равных угла. 2) В тупоугольном треугольнике все углы тупые. 3) Площадь прямоуг...
Сечением цилиндра плоскостью, параллельной оси, служит квадрат, площадь которого равна 20 дм квадратных. Найдите площадь осевого сечения цилиндра, есл...
Радиус шара равен R. Найдите площадь поверхности вписанного в шар куба если несложно рисунок...
Радиус окружности , вписанной в прямоугольный треугольник , равен полуразности его катетов . Найти отношение большего катета к меньшему...
четырехугольник abcd вписан в окружность угол abd равен 85 угол cad равен 19 найдите угол abc ответ дайте в градусах...