По условию задачи, угол ADB равен углу DCA, а угол ABD равен углу ACD, так как точка D лежит на биссектрисе угла A. Значит, треугольники ABD и ACD подобны по двум углам. Также, по определению биссектрисы, точка D делит сторону AC на отрезки AD и DC, пропорциональные отрезкам AB и BC соответственно. То есть, AD/AB = DC/BC. Из подобия треугольников ABD и ACD следует, что AB/AD = AC/CD. Совмещая эти два равенства, получаем AB/AD = AC/CD = BC/AD. Значит, треугольники ABD и DCA подобны по трем сторонам, а значит, они равны.