Перед ударом импульс первого шарика равен $p_1 = mv_1 = 0.3 \cdot 8 = 2.4$ кг$\cdot$м/с, а импульс второго шарика равен $p_2 = mv_2 = 0.9 \cdot (-5) = -4.5$ кг$\cdot$м/с (знак минус означает, что шарик движется в противоположном направлении). После удара первый шарик остановился, а второй продолжил движение. Пусть его скорость после удара равна $v_2'$. Тогда импульс второго шарика после удара равен $p_2' = mv_2'$. Запишем закон сохранения импульса для системы двух шариков: $$p_1 + p_2 = p_1' + p_2'$$ Так как первый шарик остановился, то его импульс после удара равен нулю: $$p_1' = 0$$ Подставляем значения импульсов и решаем уравнение относительно $v_2'$: $$2.4 - 4.5 = 0 + 0.9v_2'$$