Так как параллелограмм ABCD имеет противоположные стороны, которые параллельны, то векторы AB и CD равны по модулю и направлению. Аналогично, векторы BC и AD равны по модулю и направлению. Значит, мы можем найти координаты точки D, используя векторы AB и BC. Вектор AB имеет координаты (5-0; 0-0) = (5;0). Вектор BC имеет координаты (12-5; 3-0) = (7;3). Точка D находится на расстоянии AB от точки A и на расстоянии BC от точки C. Значит, координаты точки D можно найти, используя формулу: D = A + BC = (0;0) + (7;3) = (7;3) Ответ: координаты четвертой вершины D равны (7;3).