Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
19 февраля 2023 11:05
1123
В △ABC высоты пересекаются в точке H, а биссектрисы в точке Q, ∠AQC=100°. Определи градусную меру углаAHC.
1
ответ
В треугольнике ABC биссектриса AQ делит сторону BC на отрезки в пропорции AC : AB.
В треугольнике ABC высота AH, проведенная из вершины A, делит сторону BC на отрезки в пропорции BH : HC.
Используя первое свойство, мы можем найти, что отношение длин отрезков QC и QB равно AC/AB. Так как точка Q лежит на биссектрисе ∠A, то угол AQC равен половине угла A. Следовательно, ∠AQB = 180° - ∠AQC = 80°.
Используя второе свойство, мы можем найти, что отношение длин отрезков BH и HC равно AB/AC. Так как точка H лежит на высоте AH, то угол BHC прямой.
Рассмотрим треугольник AHC. Он прямоугольный, так как угол AHC является углом между сторонами AH и HC, которые являются высотой и основанием, соответственно. Таким образом, угол AHC равен 90°.
Также в треугольнике AQC угол AQB равен 80°, а угол QAC равен половине угла A, то есть 45°. Следовательно, угол AQH равен 180° - 80° - 45° = 55°.
Таким образом, в треугольнике AHC угол AHC равен 90°, а в треугольнике AQH угол AQH равен 55°. Следовательно, угол AHC равен 90° + 55° = 145°. Ответ: 145°.
В треугольнике ABC высота AH, проведенная из вершины A, делит сторону BC на отрезки в пропорции BH : HC.
Используя первое свойство, мы можем найти, что отношение длин отрезков QC и QB равно AC/AB. Так как точка Q лежит на биссектрисе ∠A, то угол AQC равен половине угла A. Следовательно, ∠AQB = 180° - ∠AQC = 80°.
Используя второе свойство, мы можем найти, что отношение длин отрезков BH и HC равно AB/AC. Так как точка H лежит на высоте AH, то угол BHC прямой.
Рассмотрим треугольник AHC. Он прямоугольный, так как угол AHC является углом между сторонами AH и HC, которые являются высотой и основанием, соответственно. Таким образом, угол AHC равен 90°.
Также в треугольнике AQC угол AQB равен 80°, а угол QAC равен половине угла A, то есть 45°. Следовательно, угол AQH равен 180° - 80° - 45° = 55°.
Таким образом, в треугольнике AHC угол AHC равен 90°, а в треугольнике AQH угол AQH равен 55°. Следовательно, угол AHC равен 90° + 55° = 145°. Ответ: 145°.
0
·
Хороший ответ
20 февраля 2023 05:06
Остались вопросы?
Еще вопросы по категории Геометрия
Площадь осевого сечения конуса равна 48 см^2, его образующая составляет с плоскостью основания угол a . Вычислите площадь основания конуса. (Рисунок)...
1)Найдите угол между двумя диагоналями , выходящими из одной и той же вершины правильного восемнадцатиугольника, если во внутренней области этого угла...
хорда окружности равна 5 корней из 2 и стягивает дугу в 90 градусов .Найдите длину дуги и площадь соответствующего сектора...
Известно, что VN||AC, AC=10 м, VN=3 м, AV=4,2 м. Вычисли стороны VB и AB....
1. Найдите площадь равнобедренного треугольника со сторонами 10см, 10см и 12 см. 2. В параллелограмме две стороны 12 и 16 см, а один из углов 150°. На...