Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
19 февраля 2023 11:05
920
В △ABC высоты пересекаются в точке H, а биссектрисы в точке Q, ∠AQC=100°. Определи градусную меру углаAHC.
1
ответ
В треугольнике ABC биссектриса AQ делит сторону BC на отрезки в пропорции AC : AB.
В треугольнике ABC высота AH, проведенная из вершины A, делит сторону BC на отрезки в пропорции BH : HC.
Используя первое свойство, мы можем найти, что отношение длин отрезков QC и QB равно AC/AB. Так как точка Q лежит на биссектрисе ∠A, то угол AQC равен половине угла A. Следовательно, ∠AQB = 180° - ∠AQC = 80°.
Используя второе свойство, мы можем найти, что отношение длин отрезков BH и HC равно AB/AC. Так как точка H лежит на высоте AH, то угол BHC прямой.
Рассмотрим треугольник AHC. Он прямоугольный, так как угол AHC является углом между сторонами AH и HC, которые являются высотой и основанием, соответственно. Таким образом, угол AHC равен 90°.
Также в треугольнике AQC угол AQB равен 80°, а угол QAC равен половине угла A, то есть 45°. Следовательно, угол AQH равен 180° - 80° - 45° = 55°.
Таким образом, в треугольнике AHC угол AHC равен 90°, а в треугольнике AQH угол AQH равен 55°. Следовательно, угол AHC равен 90° + 55° = 145°. Ответ: 145°.
В треугольнике ABC высота AH, проведенная из вершины A, делит сторону BC на отрезки в пропорции BH : HC.
Используя первое свойство, мы можем найти, что отношение длин отрезков QC и QB равно AC/AB. Так как точка Q лежит на биссектрисе ∠A, то угол AQC равен половине угла A. Следовательно, ∠AQB = 180° - ∠AQC = 80°.
Используя второе свойство, мы можем найти, что отношение длин отрезков BH и HC равно AB/AC. Так как точка H лежит на высоте AH, то угол BHC прямой.
Рассмотрим треугольник AHC. Он прямоугольный, так как угол AHC является углом между сторонами AH и HC, которые являются высотой и основанием, соответственно. Таким образом, угол AHC равен 90°.
Также в треугольнике AQC угол AQB равен 80°, а угол QAC равен половине угла A, то есть 45°. Следовательно, угол AQH равен 180° - 80° - 45° = 55°.
Таким образом, в треугольнике AHC угол AHC равен 90°, а в треугольнике AQH угол AQH равен 55°. Следовательно, угол AHC равен 90° + 55° = 145°. Ответ: 145°.
0
·
Хороший ответ
20 февраля 2023 05:06
Остались вопросы?
Еще вопросы по категории Геометрия
В треугольнике ABC угол C равен 90 градусов ,а угол B равен 70 градусов.На катете AC отложен отрезок CD равный CB.Найдите углы треугольника ABD с рису...
найдите площадь сечения конуса плоскостью, учитывая, что она проведена через вершину конуса и от центра основания на 24 см, высота конуса равна 40 см,...
какие из следуйщих утверждений верны. 1)если расстояние между центрами двух окружностей больше суммы их диаметров то эти окружности не имеют общих точ...
угол АОВ равный 135градусам разделен лучами ОС и ОD на три равных угла. Сколько парпердекулярных лучей образовалось при делении?...
Найдите площадь прямоугольника, если его периметр равен 60, а отношение соседних сторон равно 4 :11...