Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Здравствуйте! Я с удовольствием помогу вам решить эту задачу.
Для начала, вспомним несколько свойств правильных многоугольников:
В правильном n-угольнике все стороны равны между собой
В правильном n-угольнике все углы равны между собой и равны 360/n градусов
Центры вписанной и описанной окружностей правильного n-угольника совпадают
Используя эти свойства, можно решить задачу. Пусть сторона вписанного шестиугольника равна a, а сторона описанного шестиугольника равна b. Тогда, воспользовавшись свойствами правильных шестиугольников, мы можем выразить площади S1 и S2:
S1 = (3a^2 sqrt(3))/2
S2 = (3b^2 sqrt(3))/2 = 7
Так как оба шестиугольника правильные и описанные окружности совпадают, то радиусы этих окружностей равны между собой. Обозначим радиус этой окружности через R.
Тогда известно, что длина стороны вписанного шестиугольника a равна длине радиуса R, так как сторона a является диаметром вписанной окружности. Кроме того, известно, что длина стороны описанного шестиугольника b равна длине радиуса R, так как сторона b является радиусом описанной окружности. Следовательно:
a = R
b = R
Таким образом, мы можем выразить площадь вписанного шестиугольника S1 через площадь описанного шестиугольника S2 и радиус R:
S1 = (3a^2 sqrt(3))/2 = (3R^2 sqrt(3))/2 = (3S2)/(2sqrt(3))
Таким образом, мы получили, что площадь вписанного шестиугольника S1 равна (3S2)/(2sqrt(3)) = (3*7)/(2sqrt(3)) = 7sqrt(3)/2.
Ответ: площадь вписанного шестиугольника равна 7sqrt(3)/2.
Для начала, вспомним несколько свойств правильных многоугольников:
В правильном n-угольнике все стороны равны между собой
В правильном n-угольнике все углы равны между собой и равны 360/n градусов
Центры вписанной и описанной окружностей правильного n-угольника совпадают
Используя эти свойства, можно решить задачу. Пусть сторона вписанного шестиугольника равна a, а сторона описанного шестиугольника равна b. Тогда, воспользовавшись свойствами правильных шестиугольников, мы можем выразить площади S1 и S2:
S1 = (3a^2 sqrt(3))/2
S2 = (3b^2 sqrt(3))/2 = 7
Так как оба шестиугольника правильные и описанные окружности совпадают, то радиусы этих окружностей равны между собой. Обозначим радиус этой окружности через R.
Тогда известно, что длина стороны вписанного шестиугольника a равна длине радиуса R, так как сторона a является диаметром вписанной окружности. Кроме того, известно, что длина стороны описанного шестиугольника b равна длине радиуса R, так как сторона b является радиусом описанной окружности. Следовательно:
a = R
b = R
Таким образом, мы можем выразить площадь вписанного шестиугольника S1 через площадь описанного шестиугольника S2 и радиус R:
S1 = (3a^2 sqrt(3))/2 = (3R^2 sqrt(3))/2 = (3S2)/(2sqrt(3))
Таким образом, мы получили, что площадь вписанного шестиугольника S1 равна (3S2)/(2sqrt(3)) = (3*7)/(2sqrt(3)) = 7sqrt(3)/2.
Ответ: площадь вписанного шестиугольника равна 7sqrt(3)/2.
0
·
Хороший ответ
5 марта 2023 09:19
Остались вопросы?
Еще вопросы по категории Геометрия
Черчение. 40 балов. Напишите как читать чертеж. 1. Как называется деталь? Из какого материала ее изготовляют? 2. Какой масштаб указан на чертеже? 3....
На рисунке изображена развертка пирамиды, которая состоит из квадрата, сторона которого равна 10 см, и четырех правильных треугольников. Определите пл...
№1. Средние линии треугольника относятся как 2:2:4, а периметр треугольника равен 45 см . Найдите стороны треугольника. №2.В прямоугольном треугольник...
Даны точки A(5;0); B(x;8); M(8;5) и N(x;0). Найди значение x и напиши координаты B и N, если расстояние между точками A и B такое же, как между точкам...
В треугольнике АВС стороны ВС и АС равны, угол С равен 108°. Биссектрисы углов А и В пересекаются в точке М. Найдите величину угла АМВ. Ответ дайте в...