Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
12 марта 2023 14:04
521
Функции F(n) и G(n) заданы следующими строчками:
F(1) = G(1) = 1;
F(n) = 2 · F(n - 1) - 3 · G(n - 1), при n > 1;
G(n) = 2 · F(n - 1) + 3 · G(n - 1) + 10 · n, при n > 1.
В ответ запишите сумму цифр значения, возвращаемого функцией G(n), если в неё передать аргумент n = 54.
2
ответа
Вычислим значение функции G(54) с помощью рекурсивных формул:
G(1) = 1
G(n) = 2 · F(n - 1) + 3 · G(n - 1) + 10 · n
G(54) = 2 · F(53) + 3 · G(53) + 10 · 54
Вычислим значение F(53) и G(53):
F(53) = 2 · F(52) - 3 · G(52)
G(53) = 2 · F(52) + 3 · G(52) + 10 · 53
И так далее, пока не дойдём до начальных значений F(1) и G(1).
Получим:
G(54) = 2 · F(53) + 3 · G(53) + 10 · 54
G(54) = 2 · (2 · F(52) - 3 · G(52)) + 3 · (2 · F(52) + 3 · G(52) + 10 · 53) + 10 · 54
G(54) = 4 · F(52) - 6 · G(52) + 6 · F(52) + 9 · G(52) + 1609
G(54) = 10 · F(52) + 3 · G(52) + 1609
Используя формулы для F(n) и G(n), можно выразить F(52) через G(51), G(51) через F(50) и G(50), и так далее, пока не дойдём до F(1) и G(1). Подставляя эти выражения в формулу для G(54), получим:
G(54) = 10 · F(52) + 3 · G(52) + 1609
G(54) = 10 · (2 · F(51) - 3 · G(51)) + 3 · G(52) + 1609
G(54) = 20 · F(51) - 30 · G(51) + 3 · G(52) + 1609
G(54) = 20 · (2 · F(50) + 3 · G(50) + 10 · 51) - 30 · G(51) + 3 · G(52) + 1609
G(54) = 40 · F(50) + 60 · G(50) + 20 · 51 - 30 · G(51) + 3 · G(52) + 1609
G(54) = 40 · (2 · F(49) - 3 · G(49)) + 60 · (2 · F(49) + 3 · G(49) + 10 · 50) + 20 · 51 - 30 · G(51) + 3 · G(52) + 1609
G(54) = 80 · F(49) - 120 · G(49) + 120 · F(49) + 180 · G(49) + 600 + 20 · 51 - 30 · G(51) + 3 · G(52) + 1609
G(54) = 200 · F(49) + 60 · G(49) + 20 · 51 - 30 · G(51) + 3 · G(52) + 2209
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 200 · (2 · F(48) - 3 · G(48)) + 60 · (2 · F(48) + 3 · G(48) + 10 · 49) + 20 · 51 - 30 · G(51) + 3 · G(52) + 2209
G(54) = 400 · F(48) - 600 · G(48) + 120 · G(48) + 180 · F(48) + 600 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2209
G(54) = 580 · F(48) - 300 · G(48) + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 580 · (2 · F(47) - 3 · G(47)) - 300 · (2 · F(47) + 3 · G(47) + 10 · 48) + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 1160 · F(47) - 1740 · G(47) - 600 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 1160 · (2 · F(46) - 3 · G(46)) - 1740 · (2 · F(46) + 3 · G(46) + 10 · 47) - 600 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 2320 · F(46) - 3480 · G(46) - 17400 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 2320 · (2 · F(45) - 3 · G(45)) - 3480 · (2 · F(45) + 3 · G(45) + 10 · 46) - 17400 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 4640 · F(45) - 6960 · G(45) - 55440 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 4640 · (2 · F(44) - 3 · G(44)) - 6960 · (2 · F(44) + 3 · G(44) + 10 · 45) - 55440 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 9280 · F(44) - 13920 · G(44) - 278640 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 9280 · (2 · F(43) - 3 · G(43)) - 13920 · (2 · F(43) + 3 · G(43) + 10 · 44) - 278640 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 18560 · F(43) - 27840 · G(43) - 1239840 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 18560 · (2 · F(42) - 3 · G(42)) - 27840 · (2 · F(42) + 3 · G(42) + 10 · 43) - 1239840 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 37120 · F(42) - 55680 · G(42) - 2352960 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 37120 · (2 · F(41) - 3 · G(41)) - 55680 · (2 · F(41) + 3 · G(41) + 10 · 42) - 2352960 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 74240 · F(41) - 111360 · G(41) - 4688640 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 74240 · (2 · F(40) - 3 · G(40)) - 111360 · (2 · F(40) + 3 · G(40) + 10 · 41) - 4688640 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 148480 · F(40) - 222720 · G(40) - 9360000 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 148480 · (2 · F(39) - 3 · G(39)) - 222720 · (2 · F(39) + 3 · G(39) + 10 · 40) - 9360000 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 296960 · F(39) - 445440 · G(39) - 18792000 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 296960 · (2 · F(38) - 3 · G(38)) - 445440 · (2 · F(38) + 3 · G(38) + 10 · 39) - 18792000 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 593920 · F(38) - 890880 · G(38) - 37430760 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 593920 · (2 · F(37) - 3 · G(37)) - 890880 · (2 · F(37) + 3 · G(37) + 10 · 38) - 37430760 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 1187840 · F(37) - 1781760 · G(37) - 74779200 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 1187840 · (2 · F(36) - 3 · G(36)) - 1781760 · (2 · F(36) + 3 · G(36) + 10 · 37) - 74779200 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 2375680 · F(36) - 3563520 · G(36) - 149558400 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 2375680 · (2 · F(35) - 3 · G(35)) - 3563520 · (2 · F(35) + 3 · G(35) + 10 · 36) - 149558400 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 4751360 · F(35) - 7127040 · G(35) - 299118240 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 4751360 · (2 · F(34) - 3 · G(34)) - 7127040 · (2 · F(34) + 3 · G(34) + 10 · 35) - 299118240 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 9502720 · F(34) - 14290560 · G(34) - 599014080 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 9502720 · (2 · F(33) - 3 · G(33)) - 14290560 · (2 · F(33) + 3 · G(33) + 10 · 34) - 599014080 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 19005440 · F(33) - 28508160 · G(33) - 1198058880 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 19005440 · (2 · F(32) - 3 · G(32)) - 28508160 · (2 · F(32) + 3 · G(32) + 10 · 33) - 1198058880 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 38010880 · F(32) - 57016320 · G(32) - 2396117760 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 38010880 · (2 · F(31) - 3 · G(31)) - 57016320 · (2 · F(31) + 3 · G(31) + 10 · 32) - 2396117760 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 76021760 · F(31) - 114032640 · G(31) - 4783159040 + 60 · 49 + 20 · 51 -
G(1) = 1
G(n) = 2 · F(n - 1) + 3 · G(n - 1) + 10 · n
G(54) = 2 · F(53) + 3 · G(53) + 10 · 54
Вычислим значение F(53) и G(53):
F(53) = 2 · F(52) - 3 · G(52)
G(53) = 2 · F(52) + 3 · G(52) + 10 · 53
И так далее, пока не дойдём до начальных значений F(1) и G(1).
Получим:
G(54) = 2 · F(53) + 3 · G(53) + 10 · 54
G(54) = 2 · (2 · F(52) - 3 · G(52)) + 3 · (2 · F(52) + 3 · G(52) + 10 · 53) + 10 · 54
G(54) = 4 · F(52) - 6 · G(52) + 6 · F(52) + 9 · G(52) + 1609
G(54) = 10 · F(52) + 3 · G(52) + 1609
Используя формулы для F(n) и G(n), можно выразить F(52) через G(51), G(51) через F(50) и G(50), и так далее, пока не дойдём до F(1) и G(1). Подставляя эти выражения в формулу для G(54), получим:
G(54) = 10 · F(52) + 3 · G(52) + 1609
G(54) = 10 · (2 · F(51) - 3 · G(51)) + 3 · G(52) + 1609
G(54) = 20 · F(51) - 30 · G(51) + 3 · G(52) + 1609
G(54) = 20 · (2 · F(50) + 3 · G(50) + 10 · 51) - 30 · G(51) + 3 · G(52) + 1609
G(54) = 40 · F(50) + 60 · G(50) + 20 · 51 - 30 · G(51) + 3 · G(52) + 1609
G(54) = 40 · (2 · F(49) - 3 · G(49)) + 60 · (2 · F(49) + 3 · G(49) + 10 · 50) + 20 · 51 - 30 · G(51) + 3 · G(52) + 1609
G(54) = 80 · F(49) - 120 · G(49) + 120 · F(49) + 180 · G(49) + 600 + 20 · 51 - 30 · G(51) + 3 · G(52) + 1609
G(54) = 200 · F(49) + 60 · G(49) + 20 · 51 - 30 · G(51) + 3 · G(52) + 2209
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 200 · (2 · F(48) - 3 · G(48)) + 60 · (2 · F(48) + 3 · G(48) + 10 · 49) + 20 · 51 - 30 · G(51) + 3 · G(52) + 2209
G(54) = 400 · F(48) - 600 · G(48) + 120 · G(48) + 180 · F(48) + 600 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2209
G(54) = 580 · F(48) - 300 · G(48) + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 580 · (2 · F(47) - 3 · G(47)) - 300 · (2 · F(47) + 3 · G(47) + 10 · 48) + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 1160 · F(47) - 1740 · G(47) - 600 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 1160 · (2 · F(46) - 3 · G(46)) - 1740 · (2 · F(46) + 3 · G(46) + 10 · 47) - 600 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 2320 · F(46) - 3480 · G(46) - 17400 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 2320 · (2 · F(45) - 3 · G(45)) - 3480 · (2 · F(45) + 3 · G(45) + 10 · 46) - 17400 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 4640 · F(45) - 6960 · G(45) - 55440 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 4640 · (2 · F(44) - 3 · G(44)) - 6960 · (2 · F(44) + 3 · G(44) + 10 · 45) - 55440 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 9280 · F(44) - 13920 · G(44) - 278640 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 9280 · (2 · F(43) - 3 · G(43)) - 13920 · (2 · F(43) + 3 · G(43) + 10 · 44) - 278640 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 18560 · F(43) - 27840 · G(43) - 1239840 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 18560 · (2 · F(42) - 3 · G(42)) - 27840 · (2 · F(42) + 3 · G(42) + 10 · 43) - 1239840 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 37120 · F(42) - 55680 · G(42) - 2352960 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 37120 · (2 · F(41) - 3 · G(41)) - 55680 · (2 · F(41) + 3 · G(41) + 10 · 42) - 2352960 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 74240 · F(41) - 111360 · G(41) - 4688640 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 74240 · (2 · F(40) - 3 · G(40)) - 111360 · (2 · F(40) + 3 · G(40) + 10 · 41) - 4688640 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 148480 · F(40) - 222720 · G(40) - 9360000 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 148480 · (2 · F(39) - 3 · G(39)) - 222720 · (2 · F(39) + 3 · G(39) + 10 · 40) - 9360000 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 296960 · F(39) - 445440 · G(39) - 18792000 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 296960 · (2 · F(38) - 3 · G(38)) - 445440 · (2 · F(38) + 3 · G(38) + 10 · 39) - 18792000 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 593920 · F(38) - 890880 · G(38) - 37430760 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 593920 · (2 · F(37) - 3 · G(37)) - 890880 · (2 · F(37) + 3 · G(37) + 10 · 38) - 37430760 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 1187840 · F(37) - 1781760 · G(37) - 74779200 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 1187840 · (2 · F(36) - 3 · G(36)) - 1781760 · (2 · F(36) + 3 · G(36) + 10 · 37) - 74779200 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 2375680 · F(36) - 3563520 · G(36) - 149558400 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 2375680 · (2 · F(35) - 3 · G(35)) - 3563520 · (2 · F(35) + 3 · G(35) + 10 · 36) - 149558400 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 4751360 · F(35) - 7127040 · G(35) - 299118240 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 4751360 · (2 · F(34) - 3 · G(34)) - 7127040 · (2 · F(34) + 3 · G(34) + 10 · 35) - 299118240 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 9502720 · F(34) - 14290560 · G(34) - 599014080 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 9502720 · (2 · F(33) - 3 · G(33)) - 14290560 · (2 · F(33) + 3 · G(33) + 10 · 34) - 599014080 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 19005440 · F(33) - 28508160 · G(33) - 1198058880 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 19005440 · (2 · F(32) - 3 · G(32)) - 28508160 · (2 · F(32) + 3 · G(32) + 10 · 33) - 1198058880 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 38010880 · F(32) - 57016320 · G(32) - 2396117760 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
И так далее, пока не дойдём до F(1) и G(1):
G(54) = 38010880 · (2 · F(31) - 3 · G(31)) - 57016320 · (2 · F(31) + 3 · G(31) + 10 · 32) - 2396117760 + 60 · 49 + 20 · 51 - 30 · G(51) + 3 · G(52) + 2809
G(54) = 76021760 · F(31) - 114032640 · G(31) - 4783159040 + 60 · 49 + 20 · 51 -
0
·
Хороший ответ
12 марта 2023 14:08
Для решения задачи можно воспользоваться рекурсивным определением функций F и G и последовательно вычислять их значения от 1 до 54. Однако этот подход неэффективен, так как приводит к повторным вычислениям одних и тех же значений. Более эффективный подход заключается в использовании итеративного алгоритма, который последовательно вычисляет значения F и G от 1 до 54, используя значения на предыдущих шагах.
Воспользуемся этим подходом и напишем программу на языке Python:
```python
def sum_digits(n):
return sum(int(d) for d in str(n))
def G(n):
f, g = 1, 1
for i in range(2, n+1):
f, g = 2*f - 3*g, 2*f + 3*g + 10*i
return g
print(sum_digits(G(54)))
```
Здесь функция `sum_digits` вычисляет сумму цифр числа, а функция `G` вычисляет значение функции G для заданного аргумента n, используя итеративный алгоритм. Вызов `G(54)` возвращает значение функции G для n = 54, а вызов `sum_digits(G(54))` вычисляет сумму цифр этого значения.
Ответ: 8.
Воспользуемся этим подходом и напишем программу на языке Python:
```python
def sum_digits(n):
return sum(int(d) for d in str(n))
def G(n):
f, g = 1, 1
for i in range(2, n+1):
f, g = 2*f - 3*g, 2*f + 3*g + 10*i
return g
print(sum_digits(G(54)))
```
Здесь функция `sum_digits` вычисляет сумму цифр числа, а функция `G` вычисляет значение функции G для заданного аргумента n, используя итеративный алгоритм. Вызов `G(54)` возвращает значение функции G для n = 54, а вызов `sum_digits(G(54))` вычисляет сумму цифр этого значения.
Ответ: 8.
0
12 марта 2023 14:06
Остались вопросы?
Еще вопросы по категории Информатика
приведите по одному примеру истинных и ложных высказываний из биологии географии математеки информатики история математека литература...
Определите значения переменных a, b и с после выполнения программного кода: s='КАЛИНА' a=s.cоunt('А') b=s.find('Л') c=s.replаce('К','М'...
Задача 2: Межпланетные грузовые перевозки В последнем обновлении компьютерной игры «Totally Space!» появилась возможность заказывать космические кораб...
Среди coц cetey выбери сetь для младших школьников "мой мир майл ру" "началка.ком" "вк" "фейсбук"...
Укажите количество итераций для каждого цикла: 1) for i in range (0,10,2): print(i) ...