Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
Для решения задачи нам понадобятся формулы для вычисления мощности и теплоты, выделившейся в резисторе:
$P = \frac{U^2}{R}$ - мощность, выделяющаяся в резисторе;
$Q = P \cdot t$ - теплота, выделившаяся в резисторе за время t.
Из условия задачи известны начальное и конечное сопротивление резистора, а также напряжение, которое поддерживается постоянным. Найдем изменение сопротивления:
$\Delta R = R_2 - R_1 = 6 - 2 = 4$ Ом.
Далее, зная, что электрический ток уменьшается линейно со временем, мы можем записать его как функцию времени:
$I(t) = I_0 - \frac{\Delta I}{\Delta t} \cdot t$,
где $I_0$ - начальный ток, $\Delta I$ - изменение тока за время $\Delta t$, которое равно 10 секундам.
Найдем начальный ток:
$I_0 = \frac{U}{R_1} = \frac{12}{2} = 6$ А.
А изменение тока за время 10 секунд:
$\Delta I = I_1 - I_0 = \frac{\Delta U}{R_2} - \frac{\Delta U}{R_1} = \frac{U}{R_2} - \frac{U}{R_1} = U \cdot \frac{R_1 - R_2}{R_1 \cdot R_2} = 12 \cdot \frac{2}{6 \cdot 2} = 2$ А.
Теперь можем записать ток как функцию времени:
$I(t) = 6 - \frac{2}{10} \cdot t = 6 - 0.2t$.
Осталось найти мощность, выделяющуюся в резисторе в момент времени t:
$P(t) = \frac{U^2}{R(t)} = \frac{144}{R_1 + \Delta R \cdot \frac{t}{10}}$.
И теплоту, выделившуюся за время 10 секунд:
$Q = \int_0^{10} P(t) \cdot dt = \int_0^{10} \frac{144}{R_1 + \Delta R \cdot \frac{t}{10}} \cdot dt = 144 \cdot \frac{10}{\Delta R} \cdot \ln{\frac{R_1 + \Delta R}{R_1}} \approx 480$ Дж.
Ответ: теплота, выделившаяся в резисторе за 10 секунд, примерно равна 480 Дж.
$P = \frac{U^2}{R}$ - мощность, выделяющаяся в резисторе;
$Q = P \cdot t$ - теплота, выделившаяся в резисторе за время t.
Из условия задачи известны начальное и конечное сопротивление резистора, а также напряжение, которое поддерживается постоянным. Найдем изменение сопротивления:
$\Delta R = R_2 - R_1 = 6 - 2 = 4$ Ом.
Далее, зная, что электрический ток уменьшается линейно со временем, мы можем записать его как функцию времени:
$I(t) = I_0 - \frac{\Delta I}{\Delta t} \cdot t$,
где $I_0$ - начальный ток, $\Delta I$ - изменение тока за время $\Delta t$, которое равно 10 секундам.
Найдем начальный ток:
$I_0 = \frac{U}{R_1} = \frac{12}{2} = 6$ А.
А изменение тока за время 10 секунд:
$\Delta I = I_1 - I_0 = \frac{\Delta U}{R_2} - \frac{\Delta U}{R_1} = \frac{U}{R_2} - \frac{U}{R_1} = U \cdot \frac{R_1 - R_2}{R_1 \cdot R_2} = 12 \cdot \frac{2}{6 \cdot 2} = 2$ А.
Теперь можем записать ток как функцию времени:
$I(t) = 6 - \frac{2}{10} \cdot t = 6 - 0.2t$.
Осталось найти мощность, выделяющуюся в резисторе в момент времени t:
$P(t) = \frac{U^2}{R(t)} = \frac{144}{R_1 + \Delta R \cdot \frac{t}{10}}$.
И теплоту, выделившуюся за время 10 секунд:
$Q = \int_0^{10} P(t) \cdot dt = \int_0^{10} \frac{144}{R_1 + \Delta R \cdot \frac{t}{10}} \cdot dt = 144 \cdot \frac{10}{\Delta R} \cdot \ln{\frac{R_1 + \Delta R}{R_1}} \approx 480$ Дж.
Ответ: теплота, выделившаяся в резисторе за 10 секунд, примерно равна 480 Дж.
0
16 марта 2023 13:34
Остались вопросы?
Еще вопросы по категории Физика
Щарик массой 10 мг и зарядом 2 нкл подвешен на тонкой невесомой нити. Под ним расположен заряд 4 нкл на расстоянии 3 см. Чему равна сила натяжения нит...
в калориметре находится вода массой 1кг при температуре 20 градусов по цельсию. Сколько пара имеющего температуру 100 градусов по цельсию, нужно впуст...
при подъёме железобетонной плиты на высоту 8м башенный кран совершает работу равную 420 кдж. определите массу железобетонной плиты...
Каков физический смысл теоремы Гаусса для магнитного поля?...
Брусок массой М = 300 г соединен с грузом массой m = 200 г невесомой и нерастяжимой нитью, перекинутой через невесомый блок (см. рис.). Брусок скользи...