Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
Для решения задачи нам понадобятся формулы для вычисления мощности и теплоты, выделившейся в резисторе:
$P = \frac{U^2}{R}$ - мощность, выделяющаяся в резисторе;
$Q = P \cdot t$ - теплота, выделившаяся в резисторе за время t.
Из условия задачи известны начальное и конечное сопротивление резистора, а также напряжение, которое поддерживается постоянным. Найдем изменение сопротивления:
$\Delta R = R_2 - R_1 = 6 - 2 = 4$ Ом.
Далее, зная, что электрический ток уменьшается линейно со временем, мы можем записать его как функцию времени:
$I(t) = I_0 - \frac{\Delta I}{\Delta t} \cdot t$,
где $I_0$ - начальный ток, $\Delta I$ - изменение тока за время $\Delta t$, которое равно 10 секундам.
Найдем начальный ток:
$I_0 = \frac{U}{R_1} = \frac{12}{2} = 6$ А.
А изменение тока за время 10 секунд:
$\Delta I = I_1 - I_0 = \frac{\Delta U}{R_2} - \frac{\Delta U}{R_1} = \frac{U}{R_2} - \frac{U}{R_1} = U \cdot \frac{R_1 - R_2}{R_1 \cdot R_2} = 12 \cdot \frac{2}{6 \cdot 2} = 2$ А.
Теперь можем записать ток как функцию времени:
$I(t) = 6 - \frac{2}{10} \cdot t = 6 - 0.2t$.
Осталось найти мощность, выделяющуюся в резисторе в момент времени t:
$P(t) = \frac{U^2}{R(t)} = \frac{144}{R_1 + \Delta R \cdot \frac{t}{10}}$.
И теплоту, выделившуюся за время 10 секунд:
$Q = \int_0^{10} P(t) \cdot dt = \int_0^{10} \frac{144}{R_1 + \Delta R \cdot \frac{t}{10}} \cdot dt = 144 \cdot \frac{10}{\Delta R} \cdot \ln{\frac{R_1 + \Delta R}{R_1}} \approx 480$ Дж.
Ответ: теплота, выделившаяся в резисторе за 10 секунд, примерно равна 480 Дж.
$P = \frac{U^2}{R}$ - мощность, выделяющаяся в резисторе;
$Q = P \cdot t$ - теплота, выделившаяся в резисторе за время t.
Из условия задачи известны начальное и конечное сопротивление резистора, а также напряжение, которое поддерживается постоянным. Найдем изменение сопротивления:
$\Delta R = R_2 - R_1 = 6 - 2 = 4$ Ом.
Далее, зная, что электрический ток уменьшается линейно со временем, мы можем записать его как функцию времени:
$I(t) = I_0 - \frac{\Delta I}{\Delta t} \cdot t$,
где $I_0$ - начальный ток, $\Delta I$ - изменение тока за время $\Delta t$, которое равно 10 секундам.
Найдем начальный ток:
$I_0 = \frac{U}{R_1} = \frac{12}{2} = 6$ А.
А изменение тока за время 10 секунд:
$\Delta I = I_1 - I_0 = \frac{\Delta U}{R_2} - \frac{\Delta U}{R_1} = \frac{U}{R_2} - \frac{U}{R_1} = U \cdot \frac{R_1 - R_2}{R_1 \cdot R_2} = 12 \cdot \frac{2}{6 \cdot 2} = 2$ А.
Теперь можем записать ток как функцию времени:
$I(t) = 6 - \frac{2}{10} \cdot t = 6 - 0.2t$.
Осталось найти мощность, выделяющуюся в резисторе в момент времени t:
$P(t) = \frac{U^2}{R(t)} = \frac{144}{R_1 + \Delta R \cdot \frac{t}{10}}$.
И теплоту, выделившуюся за время 10 секунд:
$Q = \int_0^{10} P(t) \cdot dt = \int_0^{10} \frac{144}{R_1 + \Delta R \cdot \frac{t}{10}} \cdot dt = 144 \cdot \frac{10}{\Delta R} \cdot \ln{\frac{R_1 + \Delta R}{R_1}} \approx 480$ Дж.
Ответ: теплота, выделившаяся в резисторе за 10 секунд, примерно равна 480 Дж.
0
16 марта 2023 13:34
Остались вопросы?
Еще вопросы по категории Физика
Определи, на сколько градусов нагреется вода объёмом 3 л, если ей передать количество теплоты, равное 189 Дж. Удельная те...
Во сколько раз длина волны излучения атома водорода при переходе из третьего энергетического состояния во второе больше длины волны излучен...
Мячик упал с высоты 4 м, отскочил от земли и был пойман на половине высоты. Каковы путь и модуль перемещения мячика?...
Физическое явление-это а)Сила б)Медь в)Килограмм г)Испарение...
Какое значение имеет физика для техники? Покажите это на примерах....