Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для решения задачи нам понадобятся формулы для вычисления мощности и теплоты, выделившейся в резисторе:
$P = \frac{U^2}{R}$ - мощность, выделяющаяся в резисторе;
$Q = P \cdot t$ - теплота, выделившаяся в резисторе за время t.
Из условия задачи известны начальное и конечное сопротивление резистора, а также напряжение, которое поддерживается постоянным. Найдем изменение сопротивления:
$\Delta R = R_2 - R_1 = 6 - 2 = 4$ Ом.
Далее, зная, что электрический ток уменьшается линейно со временем, мы можем записать его как функцию времени:
$I(t) = I_0 - \frac{\Delta I}{\Delta t} \cdot t$,
где $I_0$ - начальный ток, $\Delta I$ - изменение тока за время $\Delta t$, которое равно 10 секундам.
Найдем начальный ток:
$I_0 = \frac{U}{R_1} = \frac{12}{2} = 6$ А.
А изменение тока за время 10 секунд:
$\Delta I = I_1 - I_0 = \frac{\Delta U}{R_2} - \frac{\Delta U}{R_1} = \frac{U}{R_2} - \frac{U}{R_1} = U \cdot \frac{R_1 - R_2}{R_1 \cdot R_2} = 12 \cdot \frac{2}{6 \cdot 2} = 2$ А.
Теперь можем записать ток как функцию времени:
$I(t) = 6 - \frac{2}{10} \cdot t = 6 - 0.2t$.
Осталось найти мощность, выделяющуюся в резисторе в момент времени t:
$P(t) = \frac{U^2}{R(t)} = \frac{144}{R_1 + \Delta R \cdot \frac{t}{10}}$.
И теплоту, выделившуюся за время 10 секунд:
$Q = \int_0^{10} P(t) \cdot dt = \int_0^{10} \frac{144}{R_1 + \Delta R \cdot \frac{t}{10}} \cdot dt = 144 \cdot \frac{10}{\Delta R} \cdot \ln{\frac{R_1 + \Delta R}{R_1}} \approx 480$ Дж.
Ответ: теплота, выделившаяся в резисторе за 10 секунд, примерно равна 480 Дж.
$P = \frac{U^2}{R}$ - мощность, выделяющаяся в резисторе;
$Q = P \cdot t$ - теплота, выделившаяся в резисторе за время t.
Из условия задачи известны начальное и конечное сопротивление резистора, а также напряжение, которое поддерживается постоянным. Найдем изменение сопротивления:
$\Delta R = R_2 - R_1 = 6 - 2 = 4$ Ом.
Далее, зная, что электрический ток уменьшается линейно со временем, мы можем записать его как функцию времени:
$I(t) = I_0 - \frac{\Delta I}{\Delta t} \cdot t$,
где $I_0$ - начальный ток, $\Delta I$ - изменение тока за время $\Delta t$, которое равно 10 секундам.
Найдем начальный ток:
$I_0 = \frac{U}{R_1} = \frac{12}{2} = 6$ А.
А изменение тока за время 10 секунд:
$\Delta I = I_1 - I_0 = \frac{\Delta U}{R_2} - \frac{\Delta U}{R_1} = \frac{U}{R_2} - \frac{U}{R_1} = U \cdot \frac{R_1 - R_2}{R_1 \cdot R_2} = 12 \cdot \frac{2}{6 \cdot 2} = 2$ А.
Теперь можем записать ток как функцию времени:
$I(t) = 6 - \frac{2}{10} \cdot t = 6 - 0.2t$.
Осталось найти мощность, выделяющуюся в резисторе в момент времени t:
$P(t) = \frac{U^2}{R(t)} = \frac{144}{R_1 + \Delta R \cdot \frac{t}{10}}$.
И теплоту, выделившуюся за время 10 секунд:
$Q = \int_0^{10} P(t) \cdot dt = \int_0^{10} \frac{144}{R_1 + \Delta R \cdot \frac{t}{10}} \cdot dt = 144 \cdot \frac{10}{\Delta R} \cdot \ln{\frac{R_1 + \Delta R}{R_1}} \approx 480$ Дж.
Ответ: теплота, выделившаяся в резисторе за 10 секунд, примерно равна 480 Дж.
0
16 марта 2023 13:34
Остались вопросы?
Еще вопросы по категории Физика
измерения показали, что проводник длиной 1 м и сечением 0.2 мм2 имеет сопротивление 2,5 Ом. Из какого сплава он сделан?...
На рисунке изображена система блоков. Масса покоящегося груза равна 20 кг. Найдите силу натяжения нити 1, нити 2, выигрыш в силе, который дает эта сис...
«Работа, мощность, энергия» 1. Металлический шар массой 500 г падает на землю с высоты 3 м. Какую работу при этом совершает сила тяжести? 2. Человек...
Назовите свойства жидкостей....
Найдите противоположно направленные и равные векторы...
