Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
20 марта 2023 07:57
932
В треугольник со сторонами 10, 14 и 16 вписан круг. Точка произвольно ставится в треугольник. Найти вероятность, что точка попадет в круг.
2
ответа
Вероятность равна соотношению площади круга и площади треугольника.
Площадь треугольника находим по формуле Герона.
Касательно окружности: находим радиус вписанной окружности, затем площадь.

0
·
Хороший ответ
20 марта 2023 09:58
Для решения задачи воспользуемся формулой для радиуса вписанной окружности в треугольник:
$$r = \frac{2S}{a+b+c},$$
где $S$ - площадь треугольника, $a$, $b$ и $c$ - длины его сторон.
Известно, что стороны треугольника равны 10, 14 и 16. Найдем площадь треугольника по формуле Герона:
$$S = \sqrt{p(p-a)(p-b)(p-c)},$$
где $p$ - полупериметр треугольника (полусумма длин его сторон):
$$p = \frac{a+b+c}{2} = \frac{10+14+16}{2} = 20.$$
Тогда
$$S = \sqrt{20\cdot10\cdot6\cdot4} = 48.$$
Подставляя значения $S$, $a$, $b$ и $c$ в формулу для радиуса вписанной окружности, получим:
$$r = \frac{2\cdot48}{10+14+16} = \frac{24}{15} = \frac{8}{5}.$$
Теперь рассмотрим два случая:
1. Точка выбирается равномерно на всей площади треугольника.
2. Точка выбирается равномерно на границе треугольника.
В первом случае вероятность попадания точки в круг равна отношению площади круга к площади треугольника:
$$P_1 = \frac{\pi r^2}{S} = \frac{\pi\cdot(\frac{8}{5})^2}{48} = \frac{2\pi}{15}.$$
Во втором случае вероятность попадания точки в круг равна отношению длины окружности круга к периметру треугольника:
$$P_2 = \frac{2\pi r}{a+b+c} = \frac{2\pi\cdot\frac{8}{5}}{10+14+16} = \frac{8\pi}{75}.$$
Ответ: вероятность попадания точки в круг равна $\frac{2\pi}{15}$ при выборе точки равномерно на всей площади треугольника и $\frac{8\pi}{75}$ при выборе точки равномерно на границе треугольника.
$$r = \frac{2S}{a+b+c},$$
где $S$ - площадь треугольника, $a$, $b$ и $c$ - длины его сторон.
Известно, что стороны треугольника равны 10, 14 и 16. Найдем площадь треугольника по формуле Герона:
$$S = \sqrt{p(p-a)(p-b)(p-c)},$$
где $p$ - полупериметр треугольника (полусумма длин его сторон):
$$p = \frac{a+b+c}{2} = \frac{10+14+16}{2} = 20.$$
Тогда
$$S = \sqrt{20\cdot10\cdot6\cdot4} = 48.$$
Подставляя значения $S$, $a$, $b$ и $c$ в формулу для радиуса вписанной окружности, получим:
$$r = \frac{2\cdot48}{10+14+16} = \frac{24}{15} = \frac{8}{5}.$$
Теперь рассмотрим два случая:
1. Точка выбирается равномерно на всей площади треугольника.
2. Точка выбирается равномерно на границе треугольника.
В первом случае вероятность попадания точки в круг равна отношению площади круга к площади треугольника:
$$P_1 = \frac{\pi r^2}{S} = \frac{\pi\cdot(\frac{8}{5})^2}{48} = \frac{2\pi}{15}.$$
Во втором случае вероятность попадания точки в круг равна отношению длины окружности круга к периметру треугольника:
$$P_2 = \frac{2\pi r}{a+b+c} = \frac{2\pi\cdot\frac{8}{5}}{10+14+16} = \frac{8\pi}{75}.$$
Ответ: вероятность попадания точки в круг равна $\frac{2\pi}{15}$ при выборе точки равномерно на всей площади треугольника и $\frac{8\pi}{75}$ при выборе точки равномерно на границе треугольника.
0
20 марта 2023 08:00
Остались вопросы?
Еще вопросы по категории Математика
Как перевести значение давления из миллиметров ртутного столба в паскали?...
Средний вес мальчиков того же возраста равен 48кг. вес Коли составляет 135% среднего веса. Сколько кг. весит Коля ?...
Половина задуманного числа на 70 больше седьмой части самого задуманного числа. Найдите задуманное число. Помогите пж!!!...
Какие тригонометрические тождества следует использовать для упрощения выражения 1 cos2t 1?...
теплоход проходит 40 1/2 км по течению реки за 1 1/2 ч на сколько больше времени уйдёт на обратный путь ,если скорость течения равна 3 3/8 км/ч?...