Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
26 марта 2023 08:37
497
Отрезок АС является биссектрисой угла ВАМ. Докажите, что треугольник АВС равен треугольнику МАС, если ВА=АМ
1
ответ
Для доказательства равенства треугольников АВС и МАС нужно показать, что они имеют равные стороны и равные углы.
Из условия задачи известно, что отрезок АС является биссектрисой угла ВАМ. Это означает, что угол САВ равен углу САМ.
Также из условия задачи известно, что ВА=АМ.
Из этих двух фактов следует, что сторона АС равна стороне МС (по теореме о равных углах и равных сторонах в треугольнике).
Теперь нужно доказать, что сторона АВ равна стороне МА, а угол А равен углу М.
Рассмотрим треугольник АВС. У него уже известны сторона АС и угол САВ. Из закона косинусов следует:
$AB^2=AV^2+BV^2-2AV\cdot BV\cdot\cos\angle BAV$
$AM^2=AV^2+VM^2-2AV\cdot VM\cdot\cos\angle VAM$
Так как ВА=АМ, то VM=VB. Подставляем это в формулу для AM^2:
$AM^2=AV^2+VB^2-2AV\cdot VB\cdot\cos\angle VAM$
Также из условия задачи известно, что угол САВ равен углу САМ. Это означает, что угол ВАС равен углу МАС.
Из закона синусов следует:
$AB/\sin\angle BAV=AV/\sin\angle ABV$
$AM/\sin\angle VAM=AV/\sin\angle ABV$
Сокращая общий множитель AV/AB, получаем:
$AB/\sin\angle BAV=AM/\sin\angle VAM$
Так как угол САВ равен углу САМ, то угол А равен углу М.
Таким образом, мы доказали, что сторона АС равна стороне МС, сторона АВ равна стороне МА, а угол А равен углу М. Следовательно, треугольник АВС равен треугольнику МАС.
Из условия задачи известно, что отрезок АС является биссектрисой угла ВАМ. Это означает, что угол САВ равен углу САМ.
Также из условия задачи известно, что ВА=АМ.
Из этих двух фактов следует, что сторона АС равна стороне МС (по теореме о равных углах и равных сторонах в треугольнике).
Теперь нужно доказать, что сторона АВ равна стороне МА, а угол А равен углу М.
Рассмотрим треугольник АВС. У него уже известны сторона АС и угол САВ. Из закона косинусов следует:
$AB^2=AV^2+BV^2-2AV\cdot BV\cdot\cos\angle BAV$
$AM^2=AV^2+VM^2-2AV\cdot VM\cdot\cos\angle VAM$
Так как ВА=АМ, то VM=VB. Подставляем это в формулу для AM^2:
$AM^2=AV^2+VB^2-2AV\cdot VB\cdot\cos\angle VAM$
Также из условия задачи известно, что угол САВ равен углу САМ. Это означает, что угол ВАС равен углу МАС.
Из закона синусов следует:
$AB/\sin\angle BAV=AV/\sin\angle ABV$
$AM/\sin\angle VAM=AV/\sin\angle ABV$
Сокращая общий множитель AV/AB, получаем:
$AB/\sin\angle BAV=AM/\sin\angle VAM$
Так как угол САВ равен углу САМ, то угол А равен углу М.
Таким образом, мы доказали, что сторона АС равна стороне МС, сторона АВ равна стороне МА, а угол А равен углу М. Следовательно, треугольник АВС равен треугольнику МАС.
0
·
Хороший ответ
26 марта 2023 08:39
Остались вопросы?
Еще вопросы по категории Геометрия
Радиус окружности,вписанной в основание правильной четырехугольной пирамиды,равен 3 корня из 2,а длина бокового ребра пирамиды равна 10.Найдите высоту...
Найдите угол между данными сторонами тупоугольного треугольника KMN, если KM = 12 см, MN = 10 см, площадь треугольника равна 30 корней из...
Основание прямой четырехугольной призмы abcda1b1c1d1 прямоугольник abcd, в котором ab=5, ad=11^1/2 (одиннадцать под корнем). Расстояние между прямыми...
Дано: Угол A=Углу C+15° Найти: Угол A Угол C...
Используя данные,приведенные на рисунке,укажите номера верных утверждений! Срочно...