Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
1 апреля 2023 19:57
792
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=9 и MB=12. Касательная к описанной окружности треугольника ABC, проходящая через точку С, пересекает прямую AB в точке D. Найдите CD.
1
ответ
∠ACD =∪AC/2 =∠ABC (угол между касательной и хордой)
△ACD~△CBD (по двум углам, ∠D - общий)
AC/CB =CD/BD =AD/CD
AC/CB =AM/MB =9/12 =3/4 (по теореме о биссектрисе)
BD=4/3 CD, AD=3/4 CD
BD-AD=AB => 4/3 CD -3/4 CD =21 <=> CD=21*12/7 =36
Или
∠ACD =∪AC/2 =∠B =>
∠DCM =∠ACD+∠C/2 =∠B+∠C/2 =∠DMC
△CDM - равнобедренный, DC=DM
Квадрат касательной равен произведению секущей на ее внешнюю часть.
DC^2 =DB*DA
DA=DM-AM, DB=DM+MB
DC^2 =(DC+MB)(DC-AM) <=>
DC^2 =DC^2 +MB*DC -AM*DC -AM*MB <=>
DC=AM*MB/(MB-AM) =9*12/(12-9) =36
△ACD~△CBD (по двум углам, ∠D - общий)
AC/CB =CD/BD =AD/CD
AC/CB =AM/MB =9/12 =3/4 (по теореме о биссектрисе)
BD=4/3 CD, AD=3/4 CD
BD-AD=AB => 4/3 CD -3/4 CD =21 <=> CD=21*12/7 =36
Или
∠ACD =∪AC/2 =∠B =>
∠DCM =∠ACD+∠C/2 =∠B+∠C/2 =∠DMC
△CDM - равнобедренный, DC=DM
Квадрат касательной равен произведению секущей на ее внешнюю часть.
DC^2 =DB*DA
DA=DM-AM, DB=DM+MB
DC^2 =(DC+MB)(DC-AM) <=>
DC^2 =DC^2 +MB*DC -AM*DC -AM*MB <=>
DC=AM*MB/(MB-AM) =9*12/(12-9) =36

0
·
Хороший ответ
3 апреля 2023 19:57
Остались вопросы?
Еще вопросы по категории Геометрия
Площадь полной поверхности прямоугольного параллелепипеда равна 94 см^2. Найдите ребра AB....
Начертите две пересекающиеся прямые и выберете на одной из них отвезок который имеет общую точку с другой прямой укажите точку которая лежит на одной...
На рисунке 104 изображен куб ABCDA1B1C1D1. Укажите прямую пересечения плоскостей ACC1 и DCC1....
в сосуде имеющем форму конуса уровень жидкости достигает 1/2 высоты объем жидкости равен 25. сколько миллилитров жидкости нужно долить, чтобы полность...
Сколько треугольников на рисунке?...