Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
1 апреля 2023 19:57
772
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=9 и MB=12. Касательная к описанной окружности треугольника ABC, проходящая через точку С, пересекает прямую AB в точке D. Найдите CD.
1
ответ
∠ACD =∪AC/2 =∠ABC (угол между касательной и хордой)
△ACD~△CBD (по двум углам, ∠D - общий)
AC/CB =CD/BD =AD/CD
AC/CB =AM/MB =9/12 =3/4 (по теореме о биссектрисе)
BD=4/3 CD, AD=3/4 CD
BD-AD=AB => 4/3 CD -3/4 CD =21 <=> CD=21*12/7 =36
Или
∠ACD =∪AC/2 =∠B =>
∠DCM =∠ACD+∠C/2 =∠B+∠C/2 =∠DMC
△CDM - равнобедренный, DC=DM
Квадрат касательной равен произведению секущей на ее внешнюю часть.
DC^2 =DB*DA
DA=DM-AM, DB=DM+MB
DC^2 =(DC+MB)(DC-AM) <=>
DC^2 =DC^2 +MB*DC -AM*DC -AM*MB <=>
DC=AM*MB/(MB-AM) =9*12/(12-9) =36
△ACD~△CBD (по двум углам, ∠D - общий)
AC/CB =CD/BD =AD/CD
AC/CB =AM/MB =9/12 =3/4 (по теореме о биссектрисе)
BD=4/3 CD, AD=3/4 CD
BD-AD=AB => 4/3 CD -3/4 CD =21 <=> CD=21*12/7 =36
Или
∠ACD =∪AC/2 =∠B =>
∠DCM =∠ACD+∠C/2 =∠B+∠C/2 =∠DMC
△CDM - равнобедренный, DC=DM
Квадрат касательной равен произведению секущей на ее внешнюю часть.
DC^2 =DB*DA
DA=DM-AM, DB=DM+MB
DC^2 =(DC+MB)(DC-AM) <=>
DC^2 =DC^2 +MB*DC -AM*DC -AM*MB <=>
DC=AM*MB/(MB-AM) =9*12/(12-9) =36

0
·
Хороший ответ
3 апреля 2023 19:57
Остались вопросы?
Еще вопросы по категории Геометрия
Квадратный лист бумаги ABCD согнули по линии EF так, что точка с Попала на середину стороны AD (точка с на рисунке). Найдите длину отрезка DE, если дл...
Про трапецию 𝐾𝑀𝑁𝑃 с основаниями 𝐾𝑃 и 𝑀𝑁 известно, что 𝐾𝑀 = 2,𝐾𝑃 = √3,∠𝐾𝑀𝑁 = 150°. Найдите диагональ 𝑀𝑃 трапеции 𝐾𝑀𝑁𝑃. Пр...
Найдите sin A, если: а) cos A=1/2, б) cos A = корень из 2/2...
Отрезок АК-биссектриса треугольника САЕ. Через точку К проведена прямая,параллельная стороне СА и пересекающая сторону АЕ в точке N. Найдите углы треу...
Найдите площадь прямоугольника,если его диагональ равная 10 см, образует со стороной угол, равный 30*(*-градусам)...