Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
1 апреля 2023 21:11
278
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=10 и MB=18 . Касательная к описанной окружности треугольника ABC , проходящая через точку C , пересекает прямую AB в точке D . Найдите CD .
1
ответ
Треугольники ADC и CDB подобны по двум углам (<DCА=<CВА = половине градусной меры дуги АС согласно теоремам об углах вписанном - АВС и между касательной и хордой - DCA, а <D у них общий).
Из подобия имеем: АС/ВС=DC/BD=AD/DC=10/18 =5/9 (по теореме о биссектрисе угла, делящей противоположную сторону в отношении прилежащих сторон - АС/ВС=АМ/МВ).
Тогда из этих соотношений:
DC=(9/5)*AD (1)
DC=(5/9)*BD (2).
АВ=28 (дано), AD = BD-AB = ВD-28.
Приравняем (1) и (2):
(9/5)*(ВD-28)=(5/9)*BD
BD(9/5-5/9)=28*9/5 =>
BD*56/45 = 28*81/45 =>
BD = 28*81/56 = 81/2 = 40,5 ед.
Тогда из (2): СD=(5/9)*BD = 22,5 ед.
Из подобия имеем: АС/ВС=DC/BD=AD/DC=10/18 =5/9 (по теореме о биссектрисе угла, делящей противоположную сторону в отношении прилежащих сторон - АС/ВС=АМ/МВ).
Тогда из этих соотношений:
DC=(9/5)*AD (1)
DC=(5/9)*BD (2).
АВ=28 (дано), AD = BD-AB = ВD-28.
Приравняем (1) и (2):
(9/5)*(ВD-28)=(5/9)*BD
BD(9/5-5/9)=28*9/5 =>
BD*56/45 = 28*81/45 =>
BD = 28*81/56 = 81/2 = 40,5 ед.
Тогда из (2): СD=(5/9)*BD = 22,5 ед.
0
·
Хороший ответ
3 апреля 2023 21:11
Остались вопросы?
Еще вопросы по категории Геометрия
На стороне АС треугольника АВС отмечены точки Д и Е, АД = СЕ доказать, что если ВД = ВЕ, то АВ=ВС...
Помогите пожалуйста найти пириметр и площадь трапеции....
Какое из следующих утверждений верно ? 1) Диагонали прямоугольной трапеции равна. 2) В тупоугольном треугольнике Все углы тупые . 3) Существует пря...
Что такое масштабная линейка?Чем она отличается от обычной линейки?...
Помогите решить....
Все предметы