Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
1 апреля 2023 22:01
935
в прямоугольном треугольнике с катетами 6 и 8 проведена медиана к гипотенузе. Найдите синус угла между большим катетом и медианой.
2
ответа
Медиана,проведённая из вершины прямого угла прямоугольного треугольника равна половине гипотенузы(по свойству прямоугольного треугольника).Пусть угол АСВ в прямоуг.треуг.-прямой,АВ-гипотенуза,СМ- медиана,АВ= корень квадратный из(8^2+6^2)=10(по теореме Пифагора).СМ=10/2=5.ВМ=1/2АВ=5,т.к. СМ медиана.Т.к. СМ=ВМ,то треугольник ВМС-равнобедрынный,тогда в нём угол МВС равен углу ВСМ,следовательно синус угла ВСМ(искомый)=синусу угла ВМС = АС/АВ=6/10=0,6.Ответ:0,6
0
·
Хороший ответ
3 апреля 2023 22:01
Чертеж во вложении.
Найдем гипотенузу АВ в треугольнике АВС по теореме Пифагора:

Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы. Поэтому МС=МА=МВ=5.
медиана треугольника делит его на два треугольника с равными площадями.

Значит площади АСМ и СМВ равны по 12.




Ответ: 0,6
Найдем гипотенузу АВ в треугольнике АВС по теореме Пифагора:
Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы. Поэтому МС=МА=МВ=5.
медиана треугольника делит его на два треугольника с равными площадями.
Значит площади АСМ и СМВ равны по 12.
Ответ: 0,6

0
3 апреля 2023 22:01
Остались вопросы?
Еще вопросы по категории Геометрия
Диагонали ромба образуют с его стороной углы, один из которых на 50 градусов меньше другого. Найдите углы ромба. P.S. Нужно подробное решение с рисунк...
Внешний угол при вершине В треугольника ABC равен 98°. Биссектрисы углов А и С треугольника пересекаются в точке О. Найдите величину угла АОС. Ответ д...
Изобразите тетраэдр DABC и постройте его сечение плоскостью, проходящей через точки M и N, являющиеся серединами ребер DC и BC, и точку K, такую, что...
Каким свойством обладает вертикальные углы? каким свойством обладает смежные углы?...
Периметр прямоугольника равен 62 см , а точка пересечения диагоналей удалена от одной из его сторон на 12 см.Найдите длину диагонали прямоугольника...