Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
1 апреля 2023 23:50
439
Площадь параллелограмма ABCD равна 115. Точка Е - середина стороны AD. Найдите площадь треугольника ABE
1
ответ
Чертёж смотрите во вложении.
S(АBCD) = 115 (ед²).
Точка Е - середина AD.
Рассмотрим ΔАВЕ. Отрезок ЕВ - медиана ΔАВЕ, так как соединяет серединную точку Е стороны AD с вершиной треугольника В.
Медиана треугольника делит треугольник на два равновеликих треугольника. То есть, S(ΔАВЕ) = 0,5*S(ΔABD) ⇒ S(ΔАВЕ) = 0,5*0,5*S(АBCD) ⇒ S(ΔАВЕ) = 0,25*S(АBCD).
S(ΔАВЕ) = 0,25*115 (ед²)
S(ΔАВЕ) = 28,75 (ед²).
Дано:
Четырёхугольник АBCD - параллелограмм.S(АBCD) = 115 (ед²).
Точка Е - середина AD.
Найти:
S(ΔАВЕ) = ?Решение:
Проведём диагональ BD. По свойству параллелограмма имеем, что - ΔABD = ΔCDB. У равных многоугольников равные площади. Следовательно, S(ΔABD) = 0,5*S(АBCD).Рассмотрим ΔАВЕ. Отрезок ЕВ - медиана ΔАВЕ, так как соединяет серединную точку Е стороны AD с вершиной треугольника В.
Медиана треугольника делит треугольник на два равновеликих треугольника. То есть, S(ΔАВЕ) = 0,5*S(ΔABD) ⇒ S(ΔАВЕ) = 0,5*0,5*S(АBCD) ⇒ S(ΔАВЕ) = 0,25*S(АBCD).
S(ΔАВЕ) = 0,25*115 (ед²)
S(ΔАВЕ) = 28,75 (ед²).
Ответ: 28,75 (ед²).

0
·
Хороший ответ
3 апреля 2023 23:50
Остались вопросы?
Еще вопросы по категории Геометрия
Какая теорема называется обратной данной теореме? приведите примеры теорем,обратных данной....
Площадь осевого сечения цилиндра 20 см, а площадь основания 16 см. Найдите объем цилиндра...
Параллельные плоскости альфа и бета пересекают сторону АВ угла ВАС соответственно в точках А1 и А2, а сторону АС этого угла в В1 и В2. Найти АА1 если...
Прямая касается окружности с центром О в точке А. На касательной по разные стороны от точки А отметили точки В и С такие, что ОВ=ОС. Найдите АВ,если А...
Какие из данных утверждений верны? Запишите их номера. 1)Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника,...