Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
1 апреля 2023 23:54
986
Найти ортогональную проекцию точки (2;-3;1) на плоскость -x+3y-3z-5.
1
ответ
Перпендикуляр из заданной точки (2;-3;1) на плоскость -x+3y-3z-5 = 0 это прямая с направляющим вектором, равным нормальному вектору плоскости ( это (-1; 3; -3)).
По заданной точке и такому вектору получаем уравнение прямой, перпендикулярной заданной плоскости:
(x - 2)/(-1) = (y + 3)/3 = (z - 1)/(-3).
Теперь можно найти ортогональную проекцию точки (2;-3;1) на плоскость -x+3y-3z-5 = 0 как точку пересечения прямой с этой плоскостью.
Уравнение прямой выразим в параметрическом виде.
(x - 2)/(-1) = (y + 3)/3 = (z - 1)/(-3) = t.
x = -t + 2,
y = 3t - 3,
z = -3t + 1 и подставим в уравнение плоскости -x+3y-3z-5 = 0.
t - 2+ 9t - 9 +9t - 3 - 5 = 0,
19t - 19 = 0, отсюда t = 19/19 = 1.
Подставим t в параметрические уравнения прямой и получаем искомые координаты проекции точки на плоскость.
x = -t + 2 = -1 + 2 = 1,
y = 3t - 3 = 3*1 - 3 = 0,
z = -3t + 1 =-3*1 + 1 = -2.
Ответ: точка (1; 0; -2).
По заданной точке и такому вектору получаем уравнение прямой, перпендикулярной заданной плоскости:
(x - 2)/(-1) = (y + 3)/3 = (z - 1)/(-3).
Теперь можно найти ортогональную проекцию точки (2;-3;1) на плоскость -x+3y-3z-5 = 0 как точку пересечения прямой с этой плоскостью.
Уравнение прямой выразим в параметрическом виде.
(x - 2)/(-1) = (y + 3)/3 = (z - 1)/(-3) = t.
x = -t + 2,
y = 3t - 3,
z = -3t + 1 и подставим в уравнение плоскости -x+3y-3z-5 = 0.
t - 2+ 9t - 9 +9t - 3 - 5 = 0,
19t - 19 = 0, отсюда t = 19/19 = 1.
Подставим t в параметрические уравнения прямой и получаем искомые координаты проекции точки на плоскость.
x = -t + 2 = -1 + 2 = 1,
y = 3t - 3 = 3*1 - 3 = 0,
z = -3t + 1 =-3*1 + 1 = -2.
Ответ: точка (1; 0; -2).
0
·
Хороший ответ
3 апреля 2023 23:54
Остались вопросы?
Еще вопросы по категории Геометрия
Запишите отношения, определяющие синус, косинус, тангенс и котангенс острого угла B(бетта) треугольника, изображенного в определениях. Фото ниже, прош...
Найдите отношение площадей двух треугольников если стороны одного треугольника равны 5 см, 8 см, 12 см, стороны другого 15см, 24 см, 36 см...
Полная поверхность правильной четырехугольной пирамиды 60 см, Боковая 35 см. Чему равна диагональ основания пирамиды?...
Помогите пожалуйста!!! На клетчатой бумаге изображён круг. Найдите площадь закрашенного сектора, если площадь круга равна 48. Выберите вариант ответа....
В основании правильной пирамиды MABCD лежит квадрат ABCD. Hайдите расстояние от центра грани ABCD до ребра MC, если высота пирамиды равна 6, а длина р...