Лучшие помощники
2 апреля 2023 01:30
446

Точка К находится на расстоянии 6см. от плоскости,наклонные КА и КВ образуют с плоскостью углы 45 и 30 градусов, угол между проекциями наклонных 135 градусов. Найти неизвестные стороны.

1 ответ
Посмотреть ответы
Ответ:
HA = 6 см
КА = 6√2 см
КВ = 12 см
НВ = 6√3 см
AB=\sqrt} см

Объяснение:
Проведем KH⊥α. Тогда КН = 6 см - расстояние от точки К до плоскости α.
Угол между прямой и плоскостью - это угол между прямой и ее проекцией на эту плоскость.
НА - проекция КА на плоскость α, значит ∠КАН = 45°,
НВ - проекция КВ на плоскость α, значит ∠КВН = 30°.
∠АНВ = 135°.
ΔКНА: ∠КНА = 90°, ∠КАН = 45°, значит треугольник равнобедренный,
НА = КН = 6 см
КА = 6√2 см как гипотенуза равнобедренного прямоугольного треугольника.
ΔКНВ: ∠КНВ = 90°,
КВ = 2КН = 12 см по свойству катета, лежащего против угла в 30°,
по теореме Пифагора:
НВ = √(КВ² - КН²) = √(144 - 36) = √108 = 6√3 см
Из ΔАНВ по теореме косинусов:
АВ² = НА² + НВ² - 2·НА·НВ·cos∠AHB
cos135° = cos(180° - 45°) = - cos45° = √2/2
AB² = 36 + 108 + 2 · 6 · 6√3 · √2/2 = 144 + 36√6
AB=\sqrt} см
image
0
·
Хороший ответ
4 апреля 2023 01:30
Остались вопросы?
Найти нужный