Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 02:17
1612
По координатам вершин треугольника ∆ABC найти:• уравнение линии BC ;
• уравнение высоты AK ;
• длину высоты AK ;
• уравнение прямой (l), которая проходит через точку A параллельно прямой BC ;
• уравнение медианы (AM ), проведенной через вершину A;
• угол (ϕ), образованный медианой, проведенной из вершины A, и стороной AB;
• площадь треугольника ABC ;
• периметр треугольника ABC .
Пример : A(− ,1 −1), B( 2,5 ), C( 3,2 )
1
ответ
Даны координаты вершин треугольника ABCA: (− 1,−1), B( 2,5 ), C( 3,2 ).
Найти:
1) Уравнение линии BC ;
Вектор ВС = (3-2; 2-5)= (1; -3).
Уравнение ВС: (х - 2)/1 = (у - 5)/(-3) или в виде уравнения с угловым коэффициентом у = -3х + 11.
2) Уравнение высоты AK - это перпендикуляр к стороне ВС.
Тогда к(АК) = -*1/к(ВС) = -1/(-3) = 1/3.
Уравнение АК: у = (1/3)х + в.
Чтобы найти в подставим координаты точки А: -1 = (1/3)*(-1) + в, отсюда
в = -1 + (1/3) = (-2/3).
Уравнение АК: у = (1/3)х - (2/3).
3) Длину высоты AK ;
Это расстояние от точки А до прямой ВС.
Для вычисления расстояния от точки M(Mx; My) до прямой Ax + By + C = 0 используем формулу:
d = |A·Mx + B·My + C| /√(A² + B²).
Подставим в формулу данные:
d = |3·(-1) + 1·(-1) + (-11)|/ √32 + 12 = |-3 - 1 - 11| /√(9 + 1 ) =
= 15 /√10 = 3√10 /2 ≈ 4.743416.
4) Уравнение прямой (l), которая проходит через точку A параллельно прямой BC ;
У этой прямой угловой коэффициент равен такому у прямой ВС,
Уравнение: у = -3х + в. Подставим координаты точки А:
-1 = (-3)*(-1) + в, отсюда в = -1 - 3 = -4.
Уравнение: у = -3х - 4.
5) Уравнение медианы (AM ), проведенной через вершину A;
Находим координаты точки М как середину стороны ВС. B( 2,5 ), C( 3,2 )
М = (2,5; 3,5). Вектор АМ = (2,5-(-1); 3,5-(-1)) = (3,5; 4,5).
Уравнение АМ: (х + 1)/3,5 = (у + 1)/4,5 или с целыми коэффициентами
(х + 1)/7 = (у + 1)/9.
Уравнение АМ в общем виде 9х - 7у + 2 = 0.
6) Угол (φ), образованный медианой, проведенной из вершины A, и стороной AB;
Вектор АВ = (2-(-1); 5-(-1)) = (3; 6). Модуль равен √(9+36) = √45 = 3√5.
Вектор АМ = (7; 9). Модуль равен √(49+81) = √130.
cos φ = (3*7 + 6*9)/(3√5*√130) = 75/15√26 = 5√26/26 = 0,98058.
Угол φ = arc cos(5√26/26) = 0,1974 радиан или 11,30993 градуса.
7) Площадь треугольника ABC ;
S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 7,5 кв.ед.
8) Периметр треугольника ABC .
Периметр Р = 14,87048 .
Найти:
1) Уравнение линии BC ;
Вектор ВС = (3-2; 2-5)= (1; -3).
Уравнение ВС: (х - 2)/1 = (у - 5)/(-3) или в виде уравнения с угловым коэффициентом у = -3х + 11.
2) Уравнение высоты AK - это перпендикуляр к стороне ВС.
Тогда к(АК) = -*1/к(ВС) = -1/(-3) = 1/3.
Уравнение АК: у = (1/3)х + в.
Чтобы найти в подставим координаты точки А: -1 = (1/3)*(-1) + в, отсюда
в = -1 + (1/3) = (-2/3).
Уравнение АК: у = (1/3)х - (2/3).
3) Длину высоты AK ;
Это расстояние от точки А до прямой ВС.
Для вычисления расстояния от точки M(Mx; My) до прямой Ax + By + C = 0 используем формулу:
d = |A·Mx + B·My + C| /√(A² + B²).
Подставим в формулу данные:
d = |3·(-1) + 1·(-1) + (-11)|/ √32 + 12 = |-3 - 1 - 11| /√(9 + 1 ) =
= 15 /√10 = 3√10 /2 ≈ 4.743416.
4) Уравнение прямой (l), которая проходит через точку A параллельно прямой BC ;
У этой прямой угловой коэффициент равен такому у прямой ВС,
Уравнение: у = -3х + в. Подставим координаты точки А:
-1 = (-3)*(-1) + в, отсюда в = -1 - 3 = -4.
Уравнение: у = -3х - 4.
5) Уравнение медианы (AM ), проведенной через вершину A;
Находим координаты точки М как середину стороны ВС. B( 2,5 ), C( 3,2 )
М = (2,5; 3,5). Вектор АМ = (2,5-(-1); 3,5-(-1)) = (3,5; 4,5).
Уравнение АМ: (х + 1)/3,5 = (у + 1)/4,5 или с целыми коэффициентами
(х + 1)/7 = (у + 1)/9.
Уравнение АМ в общем виде 9х - 7у + 2 = 0.
6) Угол (φ), образованный медианой, проведенной из вершины A, и стороной AB;
Вектор АВ = (2-(-1); 5-(-1)) = (3; 6). Модуль равен √(9+36) = √45 = 3√5.
Вектор АМ = (7; 9). Модуль равен √(49+81) = √130.
cos φ = (3*7 + 6*9)/(3√5*√130) = 75/15√26 = 5√26/26 = 0,98058.
Угол φ = arc cos(5√26/26) = 0,1974 радиан или 11,30993 градуса.
7) Площадь треугольника ABC ;
S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 7,5 кв.ед.
8) Периметр треугольника ABC .
Периметр Р = 14,87048 .

0
·
Хороший ответ
4 апреля 2023 02:17
Остались вопросы?
Еще вопросы по категории Геометрия
1. что показывает коэффициент подобия? 2. как найти коэффициент подобия? 3. чему равно отношение площадей двух подобных треугольников? 4. чему равно о...
Найти площадь ромба диагонали которого равны 16 см и 18см Выполните на листике пожалуйста....
на сторонах угла ВАС и на его биссектрисе отложены равные отрезки АВ, АС и АD. Величина угла ВDС равна 160 градусов. Определите величину угла ВАС...
На клетчатой бумаге с размером клетки 1х1 изображен ромб. Найдите длину его большей диагонали....
Найдите периметр участка земли прямоугольной формы, площадь которого равна 3200 м^2, а одна сторона в 2 раза больше другой. Ответ дайте в метрах. Помо...