Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 02:17
1510
По координатам вершин треугольника ∆ABC найти:• уравнение линии BC ;
• уравнение высоты AK ;
• длину высоты AK ;
• уравнение прямой (l), которая проходит через точку A параллельно прямой BC ;
• уравнение медианы (AM ), проведенной через вершину A;
• угол (ϕ), образованный медианой, проведенной из вершины A, и стороной AB;
• площадь треугольника ABC ;
• периметр треугольника ABC .
Пример : A(− ,1 −1), B( 2,5 ), C( 3,2 )
1
ответ
Даны координаты вершин треугольника ABCA: (− 1,−1), B( 2,5 ), C( 3,2 ).
Найти:
1) Уравнение линии BC ;
Вектор ВС = (3-2; 2-5)= (1; -3).
Уравнение ВС: (х - 2)/1 = (у - 5)/(-3) или в виде уравнения с угловым коэффициентом у = -3х + 11.
2) Уравнение высоты AK - это перпендикуляр к стороне ВС.
Тогда к(АК) = -*1/к(ВС) = -1/(-3) = 1/3.
Уравнение АК: у = (1/3)х + в.
Чтобы найти в подставим координаты точки А: -1 = (1/3)*(-1) + в, отсюда
в = -1 + (1/3) = (-2/3).
Уравнение АК: у = (1/3)х - (2/3).
3) Длину высоты AK ;
Это расстояние от точки А до прямой ВС.
Для вычисления расстояния от точки M(Mx; My) до прямой Ax + By + C = 0 используем формулу:
d = |A·Mx + B·My + C| /√(A² + B²).
Подставим в формулу данные:
d = |3·(-1) + 1·(-1) + (-11)|/ √32 + 12 = |-3 - 1 - 11| /√(9 + 1 ) =
= 15 /√10 = 3√10 /2 ≈ 4.743416.
4) Уравнение прямой (l), которая проходит через точку A параллельно прямой BC ;
У этой прямой угловой коэффициент равен такому у прямой ВС,
Уравнение: у = -3х + в. Подставим координаты точки А:
-1 = (-3)*(-1) + в, отсюда в = -1 - 3 = -4.
Уравнение: у = -3х - 4.
5) Уравнение медианы (AM ), проведенной через вершину A;
Находим координаты точки М как середину стороны ВС. B( 2,5 ), C( 3,2 )
М = (2,5; 3,5). Вектор АМ = (2,5-(-1); 3,5-(-1)) = (3,5; 4,5).
Уравнение АМ: (х + 1)/3,5 = (у + 1)/4,5 или с целыми коэффициентами
(х + 1)/7 = (у + 1)/9.
Уравнение АМ в общем виде 9х - 7у + 2 = 0.
6) Угол (φ), образованный медианой, проведенной из вершины A, и стороной AB;
Вектор АВ = (2-(-1); 5-(-1)) = (3; 6). Модуль равен √(9+36) = √45 = 3√5.
Вектор АМ = (7; 9). Модуль равен √(49+81) = √130.
cos φ = (3*7 + 6*9)/(3√5*√130) = 75/15√26 = 5√26/26 = 0,98058.
Угол φ = arc cos(5√26/26) = 0,1974 радиан или 11,30993 градуса.
7) Площадь треугольника ABC ;
S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 7,5 кв.ед.
8) Периметр треугольника ABC .
Периметр Р = 14,87048 .
Найти:
1) Уравнение линии BC ;
Вектор ВС = (3-2; 2-5)= (1; -3).
Уравнение ВС: (х - 2)/1 = (у - 5)/(-3) или в виде уравнения с угловым коэффициентом у = -3х + 11.
2) Уравнение высоты AK - это перпендикуляр к стороне ВС.
Тогда к(АК) = -*1/к(ВС) = -1/(-3) = 1/3.
Уравнение АК: у = (1/3)х + в.
Чтобы найти в подставим координаты точки А: -1 = (1/3)*(-1) + в, отсюда
в = -1 + (1/3) = (-2/3).
Уравнение АК: у = (1/3)х - (2/3).
3) Длину высоты AK ;
Это расстояние от точки А до прямой ВС.
Для вычисления расстояния от точки M(Mx; My) до прямой Ax + By + C = 0 используем формулу:
d = |A·Mx + B·My + C| /√(A² + B²).
Подставим в формулу данные:
d = |3·(-1) + 1·(-1) + (-11)|/ √32 + 12 = |-3 - 1 - 11| /√(9 + 1 ) =
= 15 /√10 = 3√10 /2 ≈ 4.743416.
4) Уравнение прямой (l), которая проходит через точку A параллельно прямой BC ;
У этой прямой угловой коэффициент равен такому у прямой ВС,
Уравнение: у = -3х + в. Подставим координаты точки А:
-1 = (-3)*(-1) + в, отсюда в = -1 - 3 = -4.
Уравнение: у = -3х - 4.
5) Уравнение медианы (AM ), проведенной через вершину A;
Находим координаты точки М как середину стороны ВС. B( 2,5 ), C( 3,2 )
М = (2,5; 3,5). Вектор АМ = (2,5-(-1); 3,5-(-1)) = (3,5; 4,5).
Уравнение АМ: (х + 1)/3,5 = (у + 1)/4,5 или с целыми коэффициентами
(х + 1)/7 = (у + 1)/9.
Уравнение АМ в общем виде 9х - 7у + 2 = 0.
6) Угол (φ), образованный медианой, проведенной из вершины A, и стороной AB;
Вектор АВ = (2-(-1); 5-(-1)) = (3; 6). Модуль равен √(9+36) = √45 = 3√5.
Вектор АМ = (7; 9). Модуль равен √(49+81) = √130.
cos φ = (3*7 + 6*9)/(3√5*√130) = 75/15√26 = 5√26/26 = 0,98058.
Угол φ = arc cos(5√26/26) = 0,1974 радиан или 11,30993 градуса.
7) Площадь треугольника ABC ;
S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 7,5 кв.ед.
8) Периметр треугольника ABC .
Периметр Р = 14,87048 .

0
·
Хороший ответ
4 апреля 2023 02:17
Остались вопросы?
Еще вопросы по категории Геометрия
На клетчатой бумаге с размером клеток 1х1 изображен параллелограмм . Найдите его площадь...
Найдите sin 150 ,cos 150,tg 150,ctg 150...
Постройте сечение тетраэдра плоскостью, проходящей через заданные точки ...
Во сколько раз увеличится площадь боковой поверхности конуса, если его образующую увеличить в 3 раза?...
Сумма вертикальных углов AOB и COD, образованных при пересечении прямых AD и BC, равна 108°. Найдите угол BOD....