Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 04:16
1342
МОЖНО НОРМАЛЬНОЕ РЕШЕНИЕ НА ЛИСТКЕ!!!Все ребра треугольной призмы равны.Найдите площадь основания призмы,если площадь ее полной поверхности равна 8+16 корень из 3
1
ответ
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
--------
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности.
Пусть ребро призмы равно а.
Грани - квадраты, их 3.
S бок=3а²
S двух осн.=( 2 а²√3):4=( а²√3):2
По условию
3а²+(а²√3):2=8+16√3
Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3)
а²=16(1+2√3):(6+√3)
Подставим значение а² в формулу площади правильного треугольника:
S=[16*(1+2√3):(6+√3)]*√3:4
S=4(√3+6):(6+√3)=4 (ед. площади)
--------
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
--------
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности.
Пусть ребро призмы равно а.
Грани - квадраты, их 3.
S бок=3а²
S двух осн.=( 2 а²√3):4=( а²√3):2
По условию
3а²+(а²√3):2=8+16√3
Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3)
а²=16(1+2√3):(6+√3)
Подставим значение а² в формулу площади правильного треугольника:
S=[16*(1+2√3):(6+√3)]*√3:4
S=4(√3+6):(6+√3)=4 (ед. площади)
--------
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
0
·
Хороший ответ
4 апреля 2023 04:16
Остались вопросы?
Еще вопросы по категории Геометрия
Пользуясь данным рисунком, назовите: а) две плоскости, содержащие прямую EF; б) прямую, по которой пересекаются плоскости BDE и SAC; в) плоскость, кот...
найдите площадь круга и длину ограничивающей его окружности если сторона квадрата описанного около него равна 6 см...
Образующая конуса равна корень из 6 см и составляет с плоскостью основания угол 45 градусов Найти V конуса. с рисунком пожалуйста...
Осевым сечением цилиндра является квадрат, площадь которого равна 64 см2. Найдите площадь основания цилиндра...
Прямая MK разбивает плоскость на две полуплоскости. из точек M и K в разные плдуплоскости проведены равные отрезки MA и KB, причём угол AMK = углу BKM...