Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
2 апреля 2023 07:40
529
Помогите,пожалуйста! Найдите наибольшее значение функции y = (21 - x)e^20-x на отрезке [19;21]. Очень часто с таким сталкиваюсь.Мы нашли производную и нашли еще одно значение 20 .Если мы подставим в функцию 20 получим 1 и да - это ответ НО если мы подставим функцию 19 то получим в ответе 2*e что больше 1 В ответе 1,но почему?
1
ответ
Решение
y = (21 - x)*e^(20 - x) [19;21]
Находим первую производную функции:
y' = - (21 - x)*e^(20 - x) - e^(20 - x)
или
y' = (x - 22)*e^(20 - x)
Приравниваем ее к нулю:
(x - 22)*e^(20 - x)
x = 22
Вычисляем значения функции на концах отрезка
f(22) = - 1/e²
f(19) = 5,4366
f(21) = 0
Ответ: fmin = 0, fmax = 5,44
y = (21 - x)*e^(20 - x) [19;21]
Находим первую производную функции:
y' = - (21 - x)*e^(20 - x) - e^(20 - x)
или
y' = (x - 22)*e^(20 - x)
Приравниваем ее к нулю:
(x - 22)*e^(20 - x)
x = 22
Вычисляем значения функции на концах отрезка
f(22) = - 1/e²
f(19) = 5,4366
f(21) = 0
Ответ: fmin = 0, fmax = 5,44
0
·
Хороший ответ
4 апреля 2023 07:40
Остались вопросы?
Еще вопросы по категории Алгебра
Зная свою массу и площадьЗная свою массу и площадь ботинка,вычислите,какое давление вы производите при ходьбе и стоя на месте.Указание.Площадь опоры б...
Решите уравнение cosx=0,8...
Дана арифметическая прогрессия: 33;25;17;Найдите первый отрицательный член этой прогрессии...
Помогите прошу))) (корень кубический) из 18 УМНОЖИТЬ НА (корень кубический) из 3/2...
Tgx≥0 решите пожалуйста с рисунком...
Все предметы