Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 07:40
762
Помогите,пожалуйста! Найдите наибольшее значение функции y = (21 - x)e^20-x на отрезке [19;21]. Очень часто с таким сталкиваюсь.Мы нашли производную и нашли еще одно значение 20 .Если мы подставим в функцию 20 получим 1 и да - это ответ НО если мы подставим функцию 19 то получим в ответе 2*e что больше 1 В ответе 1,но почему?
1
ответ
Решение
y = (21 - x)*e^(20 - x) [19;21]
Находим первую производную функции:
y' = - (21 - x)*e^(20 - x) - e^(20 - x)
или
y' = (x - 22)*e^(20 - x)
Приравниваем ее к нулю:
(x - 22)*e^(20 - x)
x = 22
Вычисляем значения функции на концах отрезка
f(22) = - 1/e²
f(19) = 5,4366
f(21) = 0
Ответ: fmin = 0, fmax = 5,44
y = (21 - x)*e^(20 - x) [19;21]
Находим первую производную функции:
y' = - (21 - x)*e^(20 - x) - e^(20 - x)
или
y' = (x - 22)*e^(20 - x)
Приравниваем ее к нулю:
(x - 22)*e^(20 - x)
x = 22
Вычисляем значения функции на концах отрезка
f(22) = - 1/e²
f(19) = 5,4366
f(21) = 0
Ответ: fmin = 0, fmax = 5,44
0
·
Хороший ответ
4 апреля 2023 07:40
Остались вопросы?
Еще вопросы по категории Алгебра
3) В амфитеатре 16 рядов, причём в каждом следующем ряду на одно и то же число мест больше, чем в предыдущем. В четвёртом ряду 23 места, а в восьмом р...
2*16^(cosx) -9*4^(cosx) +4=0 Найти корни в промежутке [-3П;-3П/2]...
532. Составьте таблицу соответствия градусной и радианной мер углов на 180° больших, чем углы, указанные в задаче 531, и отметьте соответствующие точк...
На рисунке изображен ромб ABCD.Используя рисунок найдите tg угла CDO...
Помогите решить, пожалуйста) (10 ^x-5)^x-6=100...