Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
2 апреля 2023 10:14
364
Периметр прямоугольника равен 22 а диагональ равна корню из 61.Найдите площадь этого прямоугольника. Найдите периметр прямоугольника если его площадь равна 54, а отношение соседних сторон равно 2:3
1
ответ
Р=22 = 2(а+б)
а+б=11 см
по теореме пифагора
а^2+b^2 = c^2=61
a=11-b
(11-b)^2 + b^2 = 121-22b+b^2+b^2 = 61
2b^2 - 22b + 60 = 0
b^2 - 11b + 30 = 0
b1=5
b2=6
S=5*6=30 кв см
2) S=a*b
стороны относятся как 2:3, значит a=2x , b = 3x
S=2x*3x=6x^2=54
x^2=9
x1=3,
x2=-3 <0 отбрасываем
Р=2(а+б) = 2(2х+3х)=2*5х=10х=10*3=30 см
а+б=11 см
по теореме пифагора
а^2+b^2 = c^2=61
a=11-b
(11-b)^2 + b^2 = 121-22b+b^2+b^2 = 61
2b^2 - 22b + 60 = 0
b^2 - 11b + 30 = 0
b1=5
b2=6
S=5*6=30 кв см
2) S=a*b
стороны относятся как 2:3, значит a=2x , b = 3x
S=2x*3x=6x^2=54
x^2=9
x1=3,
x2=-3 <0 отбрасываем
Р=2(а+б) = 2(2х+3х)=2*5х=10х=10*3=30 см
0
·
Хороший ответ
4 апреля 2023 10:14
Остались вопросы?
Еще вопросы по категории Геометрия
Два ребра прямоугольного параллелепипеда,выходящие из одной вершины,равны 2,4.Квадрат диагонали параллелепипеда равен 141.Найдите объем параллелепипед...
Один из смежных углов на 28° меньше другого.Какова градусная мера большего из этих углов...
Помогите решить) Объем конуса равен 16. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего кон...
Докажите, что середины сторон произвольного четырёхугольника являются вершинами параллелограмма....
А6. Вектор т = 6а + 3b - 2с разложен по трем некомпланар- ным векторама, b, с. Разложите векторb по векторама, с, m....
Все предметы