Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 10:15
324
Записать уравнение касательной к графику функции y=sin2x в точке с абциссой x0=-pi/6
1
ответ
Y(-π/6)=sin(-π/3)=-√3/2
y`=2cos2x
y`(-π/6)=2cos(-π/3)=2*1/2=1
Y=-√3/2+1(x+π/6)=x+π/6-√3/2 уравнение касательной
y`=2cos2x
y`(-π/6)=2cos(-π/3)=2*1/2=1
Y=-√3/2+1(x+π/6)=x+π/6-√3/2 уравнение касательной
0
·
Хороший ответ
4 апреля 2023 10:15
Остались вопросы?
Еще вопросы по категории Алгебра
Разложить на множители: 25х^3у^2-4ху^4...
Вычислить 5 в степени минус 3...
Решите уравнение x - x/12 = 55/12...
чайные клиперы-самые быстрые парусные корабли. Некоторые из них могли развивать скорость до 20 узлов. Переведите в километры в час скорость клипера, к...
Решите уравнение 2cos^2x +(2- √2)sinx+√2-2=0...