Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
2 апреля 2023 10:15
271
Записать уравнение касательной к графику функции y=sin2x в точке с абциссой x0=-pi/6
1
ответ
Y(-π/6)=sin(-π/3)=-√3/2
y`=2cos2x
y`(-π/6)=2cos(-π/3)=2*1/2=1
Y=-√3/2+1(x+π/6)=x+π/6-√3/2 уравнение касательной
y`=2cos2x
y`(-π/6)=2cos(-π/3)=2*1/2=1
Y=-√3/2+1(x+π/6)=x+π/6-√3/2 уравнение касательной
0
·
Хороший ответ
4 апреля 2023 10:15
Остались вопросы?
Еще вопросы по категории Алгебра
Верно ли, что промежуток возрастания функции y = x^ 2 −6 x +4 является х∈(3;+∞) ?...
Все под общим корнем 7-корень из 24 Помогите решить пожалуйста...
Решите уравнение х^4-3х^2-4=0...
Как найти разность геометрической прогрессии ?...
для поездки на дачу на автомобиле израсходовали 14 л бензина,а для поезки на станцию 3 литра.Сколько было всего литра бензина с начала,если после этих...