Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 10:58
1289
существует ли выпуклый пятиугольник углы которого равны 100°, 110°, 155°, 165°, 200° ответ обоснуйте.
1
ответ
Ответ:
Не существует!
Объяснение:
По теореме сумма пятиугольник углов любого выпуклого пятиугольника равна 540° (180°(5 - 2)).
Сложим все углы: 100° + 110° + 155°+ 165°+ 200° = 730°. Так как сумма углов больше 540° (730° > 540°), пятиугольник не является выпуклым.
(на рисунке изображен невыпуклый многоугольник)
Не существует!
Объяснение:
По теореме сумма пятиугольник углов любого выпуклого пятиугольника равна 540° (180°(5 - 2)).
Сложим все углы: 100° + 110° + 155°+ 165°+ 200° = 730°. Так как сумма углов больше 540° (730° > 540°), пятиугольник не является выпуклым.
(на рисунке изображен невыпуклый многоугольник)

0
·
Хороший ответ
4 апреля 2023 10:58
Остались вопросы?
Еще вопросы по категории Геометрия
В прямоугольнике ABCD диагонали пересекаются в точке O.E-середина стороны AB,угол BAC=50градусов.Чему равен угол EOD...
Докажите, что в равнобедренном треугольнике высоты, проведенные из вершин основания, равны....
Окружность S, вписанная в равнобедренный треугольник АВС , касается боковых сторон АВ и ВС соответственно в точках К и L, и касается основания АС в то...
Доказать, что NK || AC, MN || BC...
По краю юбки-солнце нужно пришить кружево. Сколько сантиметров кружева необходимо купить, если радиус круга, из которого шьют юбку, равен 50 см?...