Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 14:46
721
Из точки М проведен перпендикуляр МВ , равный 4 см, к плоскости прямоугольника АВСD.Наклонные МА и МС образуют с плоскостью прямоугольника углы в 45º и 30º соответственно.а) докажите, что треугольники МAD и MDC прямоугольные;
б) найдите стороны прямоугольника;
в) докажите, что треугольник ВDС является проекцией треугольника МDС на плоскость прямоугольника, и найдите его площадь.
1
ответ
а)
ABCD - прямоугольник. МВ перпендикулярна плоскости АВСD.
МА - наклонная, АВ - ее проекция. АВ⊥АD.
По т.о 3-х перпендикулярах МА⊥AD ⇒ ∆ МАD- прямоугольный.
МС - наклонная, – ВС её проекция.
По т.о 3-х перпендикулярах МС⊥СD – ∆ МСD- прямоугольный. ч.т.д.
б)
АВ=МВ:tg45°=4:1=4 (см)
ВС=MB:tg30°=4:(1/√3)=4√3
CD=AB=4; AD=BC=4√3
в)
MD - наклонная, BD - её проекция.
ВС - проекция наклонной МС.⇒
∆ BDС - проекция ∆ MDС на плоскость АВСD.
S∆ BCD=BC•CD:2=4√3•4:2=8√3 см²
ABCD - прямоугольник. МВ перпендикулярна плоскости АВСD.
МА - наклонная, АВ - ее проекция. АВ⊥АD.
По т.о 3-х перпендикулярах МА⊥AD ⇒ ∆ МАD- прямоугольный.
МС - наклонная, – ВС её проекция.
По т.о 3-х перпендикулярах МС⊥СD – ∆ МСD- прямоугольный. ч.т.д.
б)
АВ=МВ:tg45°=4:1=4 (см)
ВС=MB:tg30°=4:(1/√3)=4√3
CD=AB=4; AD=BC=4√3
в)
MD - наклонная, BD - её проекция.
ВС - проекция наклонной МС.⇒
∆ BDС - проекция ∆ MDС на плоскость АВСD.
S∆ BCD=BC•CD:2=4√3•4:2=8√3 см²

0
·
Хороший ответ
4 апреля 2023 14:46
Остались вопросы?
Еще вопросы по категории Геометрия
Используя данные,приведённые на рисунке, укажите номера верных утверждений и объясните пожалуйста.срочно...
В треугольнике ABC AB=6 см, BC=8 см.Через середину стороны AC проведены прямые, параллельные сторонам AB и BC.Найдите периметр образовавшегося четырёх...
|x|+5=12 решите уравнение с проверкой плиз...
Угол между стороной правильного " n " угольника вписанного в окружность и радиусом этой этой окружности проведенным в одну из вершин стороны равен 75...
Укажите равные векторы . MNKB - прямоугольник ....