Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
2 апреля 2023 14:46
597
Из точки М проведен перпендикуляр МВ , равный 4 см, к плоскости прямоугольника АВСD.Наклонные МА и МС образуют с плоскостью прямоугольника углы в 45º и 30º соответственно.а) докажите, что треугольники МAD и MDC прямоугольные;
б) найдите стороны прямоугольника;
в) докажите, что треугольник ВDС является проекцией треугольника МDС на плоскость прямоугольника, и найдите его площадь.
1
ответ
а)
ABCD - прямоугольник. МВ перпендикулярна плоскости АВСD.
МА - наклонная, АВ - ее проекция. АВ⊥АD.
По т.о 3-х перпендикулярах МА⊥AD ⇒ ∆ МАD- прямоугольный.
МС - наклонная, – ВС её проекция.
По т.о 3-х перпендикулярах МС⊥СD – ∆ МСD- прямоугольный. ч.т.д.
б)
АВ=МВ:tg45°=4:1=4 (см)
ВС=MB:tg30°=4:(1/√3)=4√3
CD=AB=4; AD=BC=4√3
в)
MD - наклонная, BD - её проекция.
ВС - проекция наклонной МС.⇒
∆ BDС - проекция ∆ MDС на плоскость АВСD.
S∆ BCD=BC•CD:2=4√3•4:2=8√3 см²
ABCD - прямоугольник. МВ перпендикулярна плоскости АВСD.
МА - наклонная, АВ - ее проекция. АВ⊥АD.
По т.о 3-х перпендикулярах МА⊥AD ⇒ ∆ МАD- прямоугольный.
МС - наклонная, – ВС её проекция.
По т.о 3-х перпендикулярах МС⊥СD – ∆ МСD- прямоугольный. ч.т.д.
б)
АВ=МВ:tg45°=4:1=4 (см)
ВС=MB:tg30°=4:(1/√3)=4√3
CD=AB=4; AD=BC=4√3
в)
MD - наклонная, BD - её проекция.
ВС - проекция наклонной МС.⇒
∆ BDС - проекция ∆ MDС на плоскость АВСD.
S∆ BCD=BC•CD:2=4√3•4:2=8√3 см²
0
·
Хороший ответ
4 апреля 2023 14:46
Остались вопросы?
Еще вопросы по категории Геометрия
В прямоугольном треугольнике из вершины угла,равного 60,проведена биссектриса.Расстояние от основания биссектрисы до вершины другого острого угла равн...
А) Площадь параллелограмма ABCD равна 60 см. Высота ВК, про- веденная к стороне CD, равна 10 см, AD = 12 см. Найдите периметр параллелограмма....
Кто создал теорему Пифагора? И в каком году?...
Один из углов ромба равен 72° .найдите углы, которые образует сторона ромба с его диогоналями....
Помогите пожалуйста! 1. Прямая PQ параллельна плоскости . От точек P и Q к плоскости проведены ⊥ и ⊥ . Известно, что PQ = = 10,3 см. Определ...
Все предметы